Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 127070, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37748588

RESUMO

Articular cartilage defects comprise a spectrum of diseases associated with degeneration or damage of the connective tissue present in particular joints, presenting progressive osteoarthritis if left untreated. In vitro tissue regeneration is an innovative treatment for articular cartilage injuries that is attracting not only clinical attention, but also great interest in the development of novel biomaterials, since this procedure involves the formation of a neotissue with the help of material support. In this work, functional alginate and waterborne polyurethane (WBPU) scaffolds have been developed for articular cartilage regeneration using 3D bioprinting technology. The particular properties of alginate-WBPU blends, like mechanical strength, elasticity and moistening, mimic the original cartilage tissue characteristics, being ideal for this application. To fabricate the scaffolds, mature chondrocytes were loaded into different alginate-WBPU inks with rheological properties suitable for 3D bioprinting. Bioinks with high alginate content showed better 3D printing performance, as well as structural integrity and cell viability, being most suitable for scaffolds fabrication. After 28 days of in vitro cartilage formation experiments, scaffolds containing 3.2 and 6.4 % alginate resulted in the maintenance of cell number in the range of 104 chondrocytes/scaffold in differentiated phenotypes, capable of synthesizing specialized extracellular matrix (ECM) up to 6 µg of glycosaminoglycans (GAG) and thus, showing a potential application of these scaffolds for in vitro regeneration of articular cartilage tissue.


Assuntos
Cartilagem Articular , Engenharia Tecidual/métodos , Poliuretanos , Alicerces Teciduais/química , Alginatos/química , Impressão Tridimensional
2.
Biomacromolecules ; 13(12): 4247-56, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23153018

RESUMO

A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL-b-DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL-b-DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL-b-DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.


Assuntos
Anti-Infecciosos/farmacologia , Bentonita/síntese química , Materiais Biocompatíveis/síntese química , Nanocompostos/química , Poliésteres/síntese química , Animais , Anti-Infecciosos/síntese química , Apoptose , Bacillus subtilis/efeitos dos fármacos , Bentonita/farmacologia , Varredura Diferencial de Calorimetria , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Citometria de Fluxo , L-Lactato Desidrogenase/metabolismo , Camundongos , Poliésteres/farmacologia , Pseudomonas putida/efeitos dos fármacos , Silicatos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...