Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13414, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927295

RESUMO

Interactive biorobotics provides unique experimental potential to study the mechanisms underlying social communication but is limited by our ability to build expressive robots that exhibit the complex behaviours of birds and small mammals. An alternative to physical robots is to use virtual environments. Here, we designed and built a modular, audio-visual 2D virtual environment that allows multi-modal, multi-agent interaction to study mechanisms underlying social communication. The strength of the system is an implementation based on event processing that allows for complex computation. We tested this system in songbirds, which provide an exceptionally powerful and tractable model system to study social communication. We show that pair-bonded zebra finches (Taeniopygia guttata) communicating through the virtual environment exhibit normal call timing behaviour, males sing female directed song and both males and females display high-intensity courtship behaviours to their mates. These results suggest that the environment provided is sufficiently natural to elicit these behavioral responses. Furthermore, as an example of complex behavioral annotation, we developed a fully unsupervised song motif detector and used it to manipulate the virtual social environment of male zebra finches based on the number of motifs sung. Our virtual environment represents a first step in real-time automatic behaviour annotation and animal-computer interaction using higher level behaviours such as song. Our unsupervised acoustic analysis eliminates the need for annotated training data thus reducing labour investment and experimenter bias.


Assuntos
Tentilhões , Canto , Aves Canoras , Animais , Feminino , Tentilhões/fisiologia , Masculino , Mamíferos , Meio Social , Aves Canoras/fisiologia , Vocalização Animal/fisiologia
2.
Front Insect Sci ; 2: 818449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468811

RESUMO

The walking system of the stick insect is one of the most thoroughly described invertebrate systems. We know a lot about the role of sensory input in the control of stepping of a single leg. However, the neuronal organization and connectivity of the central neural networks underlying the rhythmic activation and coordination of leg muscles still remain elusive. It is assumed that these networks can couple in the absence of phasic sensory input due to the observation of spontaneous recurrent patterns (SRPs) of coordinated motor activity equivalent to fictive stepping-phase transitions. Here we sought to quantify the phase of motor activity within SRPs in the isolated and interconnected meso- and meta-thoracic ganglia. We show that SRPs occur not only in the meso-, but also in the metathoracic ganglia of the stick insect, discovering a qualitative difference between them. We construct a network based on neurophysiological data capable of reproducing the measured SRP phases to investigate this difference. By comparing network output to the biological measurements we confirm the plausibility of the architecture and provide a hypothesis to account for these qualitative differences. The neural architecture we present couples individual central pattern generators to reproduce the fictive stepping-phase transitions observed in deafferented stick insect preparations after pharmacological activation, providing insights into the neural architecture underlying coordinated locomotion.

3.
Front Neurosci ; 15: 633945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746701

RESUMO

Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well-researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well-researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.

4.
Front Neurorobot ; 14: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676022

RESUMO

Neural signals for locomotion are influenced both by the neural network architecture and sensory inputs coordinating and adapting the gait to the environment. Adaptation relies on the ability to change amplitude, frequency, and phase of the signals within the sensorimotor loop in response to external stimuli. However, in order to experiment with closed-loop control, we first need a better understanding of the dynamics of the system and how adaptation works. Based on insights from biology, we developed a spiking neural network capable of continuously changing amplitude, frequency, and phase online. The resulting network is deployed on a hexapod robot in order to observe the walking behavior. The morphology and parameters of the network results in a tripod gait, demonstrating that a design without afferent feedback is sufficient to maintain a stable gait. This is comparable to results from biology showing that deafferented samples exhibit a tripod-like gait and adds to the evidence for a meaningful role of network topology in locomotion. Further, this work enables research into the role of sensory feedback and high-level control signals in the adaptation of gait types. A better understanding of the neural control of locomotion relates back to biology where it can provide evidence for theories that are currently not testable on live insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...