Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4440, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396287

RESUMO

3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of Gαs-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others. Therefore, cAMP targeted therapies have been and are still undergoing intense investigation for the treatment of these and other diseases. This highlights the need for developing assays to detect and monitor cAMP levels. In this study, we show cAMP Lumit assay as a highly specific homogeneous bioluminescent assay suitable for high throughput screenings with a large assay window and a wide dynamic range for cAMP detection. We believe that this assay will aid and simplify drug discovery screening efforts for cAMP signaling targeted therapies.


Assuntos
AMP Cíclico , Transdução de Sinais , AMP Cíclico/metabolismo , Adenilil Ciclases/metabolismo , Diferenciação Celular , Descoberta de Drogas
2.
ACS Pharmacol Transl Sci ; 6(12): 1851-1858, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093844

RESUMO

Cyclic guanosine monophosphate (cGMP) is a critical second messenger involved in various physiological processes, such as vasodilation and phototransduction. Its synthesis is stimulated by nitric oxide and natriuretic hormones, while its breakdown is mediated through highly regulated phosphodiesterase activities. cGMP metabolism has been targeted for the treatment of several diseases, including erectile dysfunction, hypertension, and heart failure. As more drugs are being sought, it will be critical to develop assays that accurately determine cGMP levels. Here, we present cGMP Lumit, a sensitive and specific bioluminescent assay to detect cGMP. We demonstrate the utility of the detection system in enzyme assays, cell-based assays, and high-throughput screening formats. It is anticipated that this assay will be of significant value to aid in further understanding the role of cGMP in physiology and support further drug discovery efforts toward the treatment of human disease.

3.
ACS Catal ; 10(5): 3415-3424, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33178481

RESUMO

An in-depth study of iridium catalysts for the borylation of alkyl C-H bonds is reported. Although the borylation of aryl C-H bonds can be catalyzed by iridium complexes containing phen or bpy ligands at mild temperatures and with limiting arene, the borylation of alkyl C-H bonds remains underdeveloped. We prepared a library of phenanthrolines that contain varying substitution patterns. The corresponding phen-Ir trisboryl carbon monoxide complexes were synthesized to determine the electron-donating ability of these ligands, and the initial rates for the borylation of the C-H bonds in THF and diethoxyethane ß to oxygen catalyzed by Ir complexes containing these ligands were measured. For some subsets of these ligands, the donor ability correlated positively with the rate of C-H borylation catalyzed by the complexes containing ligands within a given subset. However, across subsets, ligands possessing similar donor properties to one another form catalysts for the borylation of alkyl C-H bonds with widely varying activity. This phenomenon was investigated computationally, and it was discovered that the stabilizing interactions between the phenanthroline ligand and the boryl ligands attached to Ir in the transition state for C-H oxidative addition could account for the differences in the activity of the catalysts that possess similar electron densities at Ir. The effect of these interactions on the borylation of secondary alkyl C-H bonds is larger than it is on the borylation of primary alkyl C-H bonds.

4.
J Am Chem Soc ; 142(2): 726-732, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31880438

RESUMO

A new general de novo synthesis of pharmaceutically important N-(hetero)aryl piperidines is reported. This protocol uses a robustly diastereoselective reductive amination/aza-Michael reaction sequence to achieve rapid construction of complex polysubstituted ring systems starting from widely available heterocyclic amine nucleophiles and carbonyl electrophiles. Notably, the diastereoselectivity of this process is enhanced by the presence of water, and DFT calculations support a stereochemical model involving a facially selective protonation of a water-coordinated enol intermediate.

5.
J Am Chem Soc ; 141(41): 16479-16485, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31539230

RESUMO

A mechanistic study on the origin of the difference in reactivity between Ir catalysts for C-H borylation reactions is reported. Catalytic reactions of B2pin2 with a series of substrates that require high temperatures and long reaction times were conducted. These reactions catalyzed by the combination of [Ir(COD)(OMe)]2 and 3,4,7,8-tetramethylphenanthroline (tmphen) occur in yields that are substantially higher than those of reactions catalyzed by [Ir(COD)(OMe)]2 and 4,4'-di-tert-butylbipyridine (dtbpy). The electronic properties of Ir catalysts ligated by dtbpy or tmphen and their stoichiometric reactivity were investigated. It was found that a longer lifetime rather than higher reactivity of the catalyst leads to higher yields of reactions catalyzed by Ir-tmphen. The catalyst ligated by dtbpy decomposes principally by dissociation of the ligand and rapid borylation at the positions alpha to nitrogen. Thus, the greater stability of the catalyst containing tmphen results from its greater binding constant.


Assuntos
Compostos de Boro/química , Irídio/química , Hidrocarbonetos Policíclicos Aromáticos/química , Catálise , Ligação de Hidrogênio , Ligantes , Estrutura Molecular
6.
ACS Cent Sci ; 2(5): 281-92, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27294201

RESUMO

The functionalization of C-H bonds has created new approaches to preparing organic molecules by enabling new strategic "disconnections" during the planning of a synthetic route. Such functionalizations also have created the ability to derivatize complex molecules by modifying one or more of the many C-H bonds. For these reasons, researchers are developing new types of functionalization reactions of C-H bonds and new applications of these processes. These C-H bond functionalization reactions can be divided into two general classes: those directed by coordination to an existing functional group prior to the cleavage of the C-H bond (directed) and those occurring without coordination prior to cleavage of the C-H bond (undirected). The undirected functionalizations of C-H bonds are much less common and more challenging to develop than the directed reactions. This outlook will focus on undirected C-H bond functionalization, as well as related reactions that occur by a noncovalent association of the catalyst prior to C-H bond cleavage. The inherent challenges of conducting undirected functionalizations of C-H bonds and the methods for undirected functionalization that are being developed will be presented, along with the factors that govern selectivity in these reactions. Finally, this outlook discusses future directions for research on undirected C-H functionalization, with an emphasis on the limitations that must be overcome if this type of methodology is to become widely used in academia and in industry.

7.
J Am Chem Soc ; 138(3): 762-5, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26745739

RESUMO

We report the iridium-catalyzed borylation of primary and secondary alkyl C-H bonds directed by a Si-H group to form alkylboronate esters site selectively. The reactions occur with high selectivity at primary C-H bonds γ to the hydrosilyl group to form primary alkyl bisboronate esters. In the absence of such primary C-H bonds, the borylation occurs selectively at a secondary C-H bond γ to the hydrosilyl group, and these reactions of secondary C-H bonds occur with high diastereoselectivity. The hydrosilyl-containing alkyl boronate esters formed by this method undergo transformations selectively at the carbon-boron or carbon-silicon bonds of these products under distinct conditions to give the products of amination, oxidation, and arylation.


Assuntos
Ácidos Borônicos/síntese química , Ésteres/síntese química , Irídio/química , Compostos Organometálicos/química , Silanos/química , Ácidos Borônicos/química , Catálise , Ésteres/química , Estrutura Molecular
8.
J Am Chem Soc ; 137(26): 8633-43, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26076367

RESUMO

Primary benzylic boronate esters are useful intermediates in organic synthesis, but these reagents cannot be prepared by hydroboration. The benzylic C-H borylation of methylarenes would be a method to form these products, but such reactions without neat methylarene or a directing group are unknown. We report an approach to divert the borylation of methylarenes from aromatic positions to benzylic positions with a silylborane as reagent and a new iridium catalyst containing an electron-deficient phenanthroline as ligand. This system forms benzylic boronate esters selectively over the corresponding aryl boronate esters. An Ir diboryl monosilyl complex ligated by the phenanthroline was isolated and determined to be the resting state of the catalyst. Mechanistic studies show that this complex is kinetically competent to be an intermediate in the catalytic process. Kinetic studies of benzylic and aryl C-H borylation catalyzed by various Ir complexes show that the rate of aryl C-H borylation decreases with decreasing electron density at the metal center of the Ir catalyst, but that the rate of benzylic C-H borylation is less sensitive to the degree of electron density at the metal center of the Ir catalyst. Kinetic and computational studies suggest that the two borylation reactions respond differently to the degree of electron density at the metal center because they occur with different turnover-limiting steps. The turnover-limiting step in the borylation of aryl C-H bonds is known to be C-H oxidative addition, but the turnover-limiting step of the borylation of benzylic C-H bonds appears to be an isomerization prior to C-B reductive elimination.

9.
J Am Chem Soc ; 136(11): 4287-99, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24506058

RESUMO

A study on the iridium-catalyzed C-H borylation of heteroarenes is reported. Several heteroarenes containing multiple heteroatoms were found to be amenable to C-H borylation catalyzed by the combination of an iridium(I) precursor and tetramethylphenanthroline. The investigations of the scope of the reaction led to the development of powerful rules for predicting the regioselectivity of borylation, foremost of which is that borylation occurs distal to nitrogen atoms. One-pot functionalizations are reported of the heteroaryl boronate esters formed in situ, demonstrating the usefulness of the reported methodology for the synthesis of complex heteroaryl structures. Application of this methodology to the synthesis and late-stage functionalization of biologically active compounds is also demonstrated. Mechanistic studies show that basic heteroarenes can bind to the catalyst and alter the resting state from the olefin-bound complex observed during arene borylation to a species containing a bound heteroarene, leading to catalyst deactivation. Studies on the origins of the observed regioselectivity show that borylation occurs distal to N-H bonds due to rapid N-H borylation, creating an unfavorable steric environment for borylation adjacent to these bonds. Computational studies and mechanistic studies show that the lack of observable borylation of C-H bonds adjacent to basic nitrogen is not the result of coordination to a bulky Lewis acid prior to C-H activation, but the combination of a higher-energy pathway for the borylation of these bonds relative to other C-H bonds and the instability of the products formed from borylation adjacent to basic nitrogen.


Assuntos
Compostos de Boro/síntese química , Compostos Heterocíclicos/química , Irídio/química , Compostos de Boro/química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...