Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123957, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430950

RESUMO

The oral bioavailability of therapeutic peptides is generally low. To increase peptide transport across the gastrointestinal barrier, permeation enhancers are often used. Despite their widespread use, mechanistic knowledge of permeation enhancers is limited. To address this, we here investigate the interactions of six commonly used permeation enhancers with lipid membranes in simulated intestinal environments. Specifically, we study the interactions of the permeation enhancers sodium caprate, dodecyl maltoside, sodium cholate, sodium dodecyl sulfate, melittin, and penetratin with epithelial cell-like model membranes. To mimic the molecular composition of the real intestinal environment, the experiments are performed with two peptide drugs, salmon calcitonin and desB30 insulin, in fasted-state simulated intestinal fluid. Besides providing a comparison of the membrane interactions of the studied permeation enhancers, our results demonstrate that peptide drugs as well as intestinal-fluid components may substantially change the membrane activity of permeation enhancers. This highlights the importance of testing permeation enhancement in realistic physiological environments and carefully choosing a permeation enhancer for each individual peptide drug.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorção Intestinal/fisiologia , Transporte Biológico , Lipídeos , Permeabilidade
2.
RSC Chem Biol ; 2(4): 1115-1143, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458827

RESUMO

Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...