Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(5): 2234-2248, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717451

RESUMO

In western Canada, anthropogenic disturbances resulting from resource extraction activities are associated with habitat loss and altered predator-prey dynamics. These habitat changes are linked to increased predation risk and unsustainable mortality rates for caribou (Rangifer tarandus caribou). To inform effective habitat restoration, our goal was to examine whether specific linear disturbance features were associated with caribou predation in central mountain caribou ranges. We used predation-caused caribou mortalities and caribou GPS-collar data collected between 2008 and 2015 to assess caribou predation risk within and outside of protected areas at four spatio-temporal scales: habitat use during the (a) 30 days, (b) 7 days, and (c) 24 hours prior to caribou being killed, and (d) characteristics at caribou kill site locations. Outside of protected areas, predation risk increased closer to pipelines, seismic lines, and streams. Within protected areas, predation risk increased closer to alpine habitat. Factors predicting predation risk differed among spatio-temporal scales and linear feature types: predation risk increased closer to pipelines during the 30 and 7 days prior to caribou being killed and closer to seismic lines during the 30 days, 7 days, and 24 hours prior, but decreased closer to roads during the 30 days prior to being killed. By assessing habitat use prior to caribou being killed, we identified caribou predation risk factors that would not have been detected by analysis of kill site locations alone. These results provide further evidence that restoration of anthropogenic linear disturbance features should be an immediate priority for caribou recovery in central mountain caribou ranges.

2.
PLoS One ; 15(4): e0232248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353088

RESUMO

Mountain pine beetle (MPB) has become an invasive forest pest of mature pine in western North America as it spreads beyond its former endemic range. Management actions such as timber harvest can reduce the spread of MPB but may affect species of conservation concern like woodland caribou. Our goal was to inform MPB management within caribou ranges by exploring the impacts of MPB on caribou habitat-focusing on terrestrial lichens, an important winter food for caribou. We evaluated differences in lichen cover among four MPB management actions: timber harvest, wildfires, leaving MPB killed trees as-is, and single-tree cut-and-burn control. We found little evidence that leaving MPB killed trees as-is or controlling MPB using single-tree cut-and-burn impacted lichen cover. However, we found that lichen cover was lower in timber harvested and burned areas compared to intact undisturbed forest but only 10 to 20 years post-disturbance, respectively. Our results suggest that despite short-term reductions in lichen cover, using timber harvesting and prescribed burns to control MPB may balance management needs for MPB while maintaining lichen cover over time. However, using timber harvesting and prescribed burns to manage MPB is likely to have detrimental population-level effects on caribou by increasing the proportion of disturbed habitat and thus predators within caribou ranges. Among the four management actions that we evaluated, the cut-and-burn control program balances the need to limit the spread of MPB while also limiting negative impacts on caribou food. Our work addresses some of the challenges of managing competing forest and ecosystem values by evaluating the consequence of forest pest management actions on an important food resource for a species-at-risk.


Assuntos
Besouros/fisiologia , Líquens/fisiologia , Pinus/fisiologia , Rena/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , América do Norte , Controle de Pragas/métodos , Estações do Ano , Incêndios Florestais
3.
Ecol Evol ; 8(1): 382-395, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321879

RESUMO

Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears (Ursus arctos) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based on space-time probability models allows for prompt visits to predation sites. This enables accurate identification of the carcass size and increases fieldwork efficiency in predation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...