Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 273, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678154

RESUMO

BACKGROUND: Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms. RESULTS: Lengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length. CONCLUSIONS: SL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation.


Assuntos
Genômica , Imageamento Tridimensional , Oryza/genética , Raízes de Plantas/genética , Genoma de Planta/genética , Fenótipo , Locos de Características Quantitativas/genética
2.
J Integr Plant Biol ; 58(3): 230-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26683583

RESUMO

A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.


Assuntos
Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/crescimento & desenvolvimento , Hidroponia/métodos , Imageamento Tridimensional/métodos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Polissacarídeos Bacterianos , Solo , Tomografia Computadorizada por Raios X
3.
Plant Physiol ; 166(2): 659-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25189534

RESUMO

Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.


Assuntos
Oryza/enzimologia , Fósforo/análise , Proteínas de Plantas/fisiologia , Solo/química , Sorghum/metabolismo , Desequilíbrio de Ligação , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Sorghum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...