Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405172

RESUMO

Many migratory fishes are thought to navigate to natal streams using olfactory cues learned during early life stages. However, direct evidence for early-life olfactory imprinting is largely limited to Pacific salmon, and other species suspected to imprint show life history traits and reproductive strategies that raise uncertainty about the generality of the salmonid-based conceptual model of olfactory imprinting in fishes. Here, we studied early-life olfactory imprinting in lake sturgeon (Acipenser fulvescens), which have a life cycle notably different from Pacific salmon, but are nonetheless hypothesized to home via similar mechanisms. We tested one critical prediction of the hypothesis that early-life olfactory imprinting guides natal homing in lake sturgeon: that exposure to odorants during early-life stages results in increased activity when exposed to those odorants later in life. Lake sturgeon were exposed to artificial odorants (phenethyl alcohol and morpholine) during specific developmental windows and durations (limited to the egg, free-embryo, exogenous feeding larvae and juvenile stages), and later tested as juveniles for behavioral responses to the odorants that were demonstrative of olfactory memory. Experiments revealed that lake sturgeon reared in stream water mixed with artificial odorants for as little as 7 days responded to the odorants in behavioral assays over 50 days after the initial exposure, specifically implicating the free-embryo and larval stages as critical imprinting periods. Our study provides evidence for olfactory imprinting in a non-salmonid fish species, and supports further consideration of conservation tactics such as stream-side rearing facilities that are designed to encourage olfactory imprinting to targeted streams during early life stages. Continued research on lake sturgeon can contribute to a model of olfactory imprinting that is more generalizable across diverse fish species and will inform conservation actions for one of the world's most imperiled fish taxonomic groups.

2.
Animals (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496751

RESUMO

The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers' postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.

3.
PLoS One ; 17(11): e0277336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409729

RESUMO

Documentation of how interactions among members of different stream communities [e.g., microbial communities and aquatic insect taxa exhibiting different feeding strategies (FS)] collectively influence the growth, survival, and recruitment of stream fishes is limited. Considerable spatial overlap exists between early life stages of stream fishes, including species of conservation concern like lake sturgeon (Acipenser fulvescens), and aquatic insects and microbial taxa that abundantly occupy substrates on which spawning occurs. Habitat overlap suggests that species interactions across trophic levels may be common, but outcomes of these interactions are poorly understood. We conducted an experiment where lake sturgeon eggs were fertilized and incubated in the presence of individuals from one of four aquatic insect FS taxa including predators, facultative and obligate-scrapers, collector-filterers/facultative predators, and a control (no insects). We quantified and compared the effects of different insect taxa on the taxonomic composition and relative abundance of egg surface bacterial and lower eukaryotic communities, egg size, incubation time to hatch, free embryo body size (total length) at hatch, yolk-sac area, (a measure of resource utilization), and percent survival to hatch. Mean egg size varied significantly among insect treatments. Eggs exposed to predators had a lower mean percent survival to hatch. Eggs exposed to predators had significantly shorter incubation periods. At hatch, free embryos exposed to predators had significantly smaller yolk sacs and total length. Multivariate analyses revealed that egg bacterial and lower eukaryotic surface community composition varied significantly among insect treatments and between time periods (1 vs 4 days post-fertilization). Quantitative PCR documented significant differences in bacterial 16S copy number, and thus abundance on egg surfaces varied across insect treatments. Results indicate that lethal and non-lethal effects associated with interactions between lake sturgeon eggs and free embryos and aquatic insects, particularly predators, contributed to lake sturgeon trait variability that may affect population levels of recruitment.


Assuntos
Insetos , Microbiota , Animais , Larva , Peixes , Fenótipo , Eucariotos
4.
J Aquat Anim Health ; 32(3): 116-126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32298497

RESUMO

Bacterial kidney disease, caused by Renibacterium salmoninarum (RS), is a chronic and often fatal disease of salmonid species, and can be particularly harmful to hatchery-reared Chinook Salmon Oncorhynchus tshawytscha. A considerable amount of research has focused on the prevention of vertical and horizontal transmission; however, a comparatively little amount has investigated factors that increase the prevalence of RS infection in captive environments. We evaluated the effects of three common hatchery conditions (handling, nutrition level, and rearing density) on RS infection prevalence. Fish were sampled at 30-d and 60-d postexposure to RS. Of 577 juveniles examined, 65 (11.27%) had anterior kidneys infected with RS. Using a logistic mixed model analysis, we found effects of nutrition level (P = 0.018), handling (P = 0.010), and sampling period (P = 0.003) on the prevalence of RS. The interactions of nutrition and handling (P = 0.008) and nutrition and time (P < 0.001) were also significant. When fed a standard-nutrition diet, proportionately fewer fish were infected with RS when not handled (7.16% versus 0.04%; P = 0.003). Fish in the standard-nutrition group also had a lower prevalence of RS during the second sampling period (4.08% versus 0.08%, respectively; P < 0.001). When not handled, rearing with standard nutrition (11.50% versus 0.04%; P = 0.004) resulted in a reduction in prevalence of RS infection. Additionally, nonhandled fish had a much lower prevalence of RS infection during the second sampling period (2.66% versus 0.21%; P = 0.009). While density did not affect the prevalence of RS infection (P = 0.145), fish reared at a higher density had lower RS infection when not handled (16.48% versus 0.84%, P = 0.004). For fish at a higher density, the RS prevalence was lower during the second sampling period (10.57% versus 1.40%; P = 0.002). Our results suggest that hatchery managers can reduce RS infection prevalence by maintaining an adequate nutritional regime as recommended by the manufacturer. Additionally, the prevalence of RS may be reduced if managers decrease handling of hatchery-reared Chinook Salmon if exposed to RS.


Assuntos
Aquicultura/métodos , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Salmão , Fenômenos Fisiológicos da Nutrição Animal , Animais , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Michigan , Densidade Demográfica , Prevalência , Renibacterium/fisiologia , Salmão/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...