Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(35): 24591-24602, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39161977

RESUMO

Using cyclic voltammetry under illumination, we recently demonstrated that CdS quantum dots (QDs) form charge donor states that live for at least several minutes after illumination ends, ∼12 orders of magnitude longer than expected for free carriers. This time scale suggests that the conventionally accepted mechanism of charge transfer, wherein charges directly transfer to an acceptor following exciton dissociation, cannot be complete. Because of these long time scales, this unconventional pathway is not readily observed using time-resolved spectroscopy to probe charge transfer dynamics. Here, we investigated the chemical nature of these charge donor states using cyclic voltammetry under illumination coupled with NMR spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and optical spectroscopy. Our data reveal that charges are stored locally rather than as free carriers, and the number of charges stored is dependent on the QD surface ligation and stoichiometry. Altogether, our results confirm that electrons are stored at ligated surface Cd, these sites are competent charge donors, and this storage is charge balanced by X-type ligand desorption. We found that charge storage occurs in every QD system studied, including CdS, CdSe, and InP capped with carboxylate and phosphonate ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA