Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 53(5): 678-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38296876

RESUMO

Rangelands face threats from climate and land-use change, including inappropriate climate change mitigation initiatives such as tree planting in grassy ecosystems. The marginalization and impoverishment of rangeland communities and their indigenous knowledge systems, and the loss of biodiversity and ecosystem services, are additional major challenges. To address these issues, we propose the wilder rangelands integrated framework, co-developed by South African and European scientists from diverse disciplines, as an opportunity to address the climate, livelihood, and biodiversity challenges in the world's rangelands. More specifically, we present a Theory of Change to guide the design, monitoring, and evaluation of wilder rangelands. Through this, we aim to promote rangeland restoration, where local communities collaborate with regional and international actors to co-create new rangeland use models that simultaneously mitigate the impacts of climate change, restore biodiversity, and improve both ecosystem functioning and livelihoods.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Árvores , Conservação dos Recursos Naturais
2.
Sci Rep ; 13(1): 18774, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907682

RESUMO

The genus Cerastium includes about 200 species that are mostly found in the temperate climates of the Northern Hemisphere. Here we report the complete chloroplast genomes of Cerastium alpinum, C. arcticum and C. nigrescens. The length of cp genomes ranged from 147,940 to 148,722 bp. Their quadripartite circular structure had the same gene organization and content, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Repeat sequences varied from 16 to 23 per species, with palindromic repeats being the most frequent. The number of identified SSRs ranged from 20 to 23 per species and they were mainly composed of mononucleotide repeats containing A/T units. Based on Ka/Ks ratio values, most genes were subjected to purifying selection. The newly sequenced chloroplast genomes were characterized by a high frequency of RNA editing, including both C to U and U to C conversion. The phylogenetic relationships within the genus Cerastium and family Caryophyllaceae were reconstructed based on the sequences of 71 protein-coding genes. The topology of the phylogenetic tree was consistent with the systematic position of the studied species. All representatives of the genus Cerastium were gathered in a single clade with C. glomeratum sharing the least similarity with the others.


Assuntos
Caryophyllaceae , Genoma de Cloroplastos , Filogenia , Cloroplastos/genética , Repetições de Microssatélites/genética , Caryophyllaceae/genética
3.
Ecol Evol ; 11(22): 16228-16238, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824823

RESUMO

Global warming affects plant fitness through changes in functional traits and thereby ecosystem function. Wetlands are declining worldwide, and hence, ecosystem functions linked to wetlands are threatened. We use Caltha palustris "a common wetland plant" to study whether warming affects growth and reproduction differently depending on origin of source population, potentially affecting phenotypic response to local climate. We conducted a 2-year in situ temperature manipulation experiment using clone pairs of C. palustris in four regions, along a 1300-km latitudinal gradient of Sweden. Open-top chambers were used to passively increase temperature, paired with controls. Growth and reproductive traits were measured from 320 plants (four regions × five sites × two treatments × eight plants) over two consecutive seasons to assess the effect of warming over time. We found that warming increased plant height, leaf area, number of leaves, and roots. High-latitude populations responded more strongly to warming than low-latitude populations, especially by increasing leaf area. Warming increased number of flowers in general, but only in the second year, while number of fruits increased in low-latitude populations the first year. Prolonged warming leads to an increase in both number of leaves and flowers over time. While reproduction shows varying and regional responses to warming, impacts on plant growth, especially in high-latitude populations, have more profound effects. Such effects could lead to changes in plant community composition with increased abundance of fast-growing plants with larger leaves and more clones, affecting plant competition and ecological functions such as decomposition and nutrient retention. Effects of warming were highly context dependent; thus, we encourage further use of warming experiments to predict changes in growth, reproduction, and community composition across wetland types and climate gradients targeting different plant forms.

4.
Front Zool ; 11: 52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25053967

RESUMO

INTRODUCTION: In contact zones, genetic mixing of two taxa can be restricted by prezygotic (e.g. assortative mating) or postzygotic (lower fitness of hybrid offspring) barriers, or a combination of the two. A hybrid zone between two willow warbler subspecies (Phylloscopus trochilus trochilus, P. t. acredula) with distinctive migratory strategies occurs in central Sweden. These subspecies exhibit differences in migratory direction and distance, resulting in geographically distinct wintering areas in Africa. The subspecies may have diverged from a common refuge after the last ice age, and neutral genetic markers are homogeneous across their range. By contrast, several phenotypic traits and genetic markers of two chromosomal regions previously identified show steep clines across the divide. The evolutionary forces that maintain this migratory divide remain unknown. Here we use plumage colour, morphology, genetic markers and feather stable nitrogen-isotopes (δ (15)N) to assess if assortative mating between migratory phenotypes could be acting as a possible mechanism for keeping the two forms genetically separate and maintaining the migratory divide. We colour-ringed a willow warbler breeding population in the central part of the hybrid zone and observed the breeding population to assess phenotypic and genotypic traits of social pairs. RESULTS: Our data suggest that wintering area and genetic ancestry had an effect on male arrival time to the breeding grounds which could contribute to assortment. However, evidence for assortative mating could not be detected based on a comparison of plumage colour, morphology and δ (15)N between social mates. CONCLUSION: This finding was strengthened by analyses of subspecies-specific genetic markers, which allowed us to identify the presence of a large proportion of potential hybrids and backcrosses at the study site. Our results supported the hypothesis that pre-mating isolation in willow warblers is weak, resulting in extensive hybridisation across the migratory divide.

5.
PLoS One ; 9(5): e95252, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788148

RESUMO

Local adaptation is an important process contributing to population differentiation which can occur in continuous or isolated populations connected by various amounts of gene flow. The willow warbler (Phylloscopus trochilus) is one of the most common songbirds in Fennoscandia. It has a continuous breeding distribution where it is found in all forested habitats from sea level to the tree line and therefore constitutes an ideal species for the study of locally adapted genes associated with environmental gradients. Previous studies in this species identified a genetic marker (AFLP-WW1) that showed a steep north-south cline in central Sweden with one allele associated with coastal lowland habitats and the other with mountainous habitats. It was further demonstrated that this marker is embedded in a highly differentiated chromosome region that spans several megabases. In the present study, we sampled 2,355 individuals at 128 sites across all of Fennoscandia to study the geographic and climatic variables associated with the allele frequency distributions of WW1. Our results demonstrate that 1) allele frequency patterns significantly differ between mountain and lowland populations, 2) these allele differences coincide with extreme temperature conditions and the short growing season in the mountains, and milder conditions in coastal areas, and 3) the northern-allele or "altitude variant" of WW1 occurs in willow warblers that occupy mountainous habitat regardless of subspecies. Finally these results suggest that climate may exert selection on the genomic region associated with these alleles and would allow us to develop testable predictions for the distribution of the genetic marker based on climate change scenarios.


Assuntos
Alelos , Clima , Variação Genética , Genoma de Planta , Salix/genética , Ecossistema , Interação Gene-Ambiente , Geografia , Modelos Teóricos
6.
BMC Genomics ; 14: 330, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23672489

RESUMO

BACKGROUND: Animal migration requires adaptations in morphological, physiological and behavioural traits. Several of these traits have been shown to possess a strong heritable component in birds, but little is known about their genetic architecture. Here we used 454 sequencing of brain-derived transcriptomes from two differentially migrating subspecies of the willow warbler Phylloscopus trochilus to detect genes potentially underlying traits associated with migration. RESULTS: The transcriptome sequencing resulted in 1.8 million reads following filtering steps. Most of the reads (84%) were successfully mapped to the genome of the zebra finch Taeniopygia gutatta. The mapped reads were situated within at least 12,101 predicted zebra finch genes, with the greatest sequencing depth in exons. Reads that were mapped to intergenic regions were generally located close to predicted genes and possibly located in uncharacterized untranslated regions (UTRs). Out of 85,000 single nucleotide polymorphisms (SNPs) with a minimum sequencing depth of eight reads from each of two subspecies-specific pools, only 55 showed high differentiation, confirming previous studies showing that most of the genetic variation is shared between the subspecies. Validation of a subset of the most highly differentiated SNPs using Sanger sequencing demonstrated that several of them also were differentiated between an independent set of individuals of each subspecies. These SNPs were clustered in two chromosome regions that are likely to be influenced by divergent selection between the subspecies and that could potentially be associated with adaptations to their different migratory strategies. CONCLUSIONS: Our study represents the first large-scale sequencing analysis aiming at detecting genes underlying migratory phenotypes in birds and provides new candidates for genes potentially involved in migration.


Assuntos
Migração Animal , Perfilação da Expressão Gênica , Passeriformes/genética , Animais , Genômica , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
7.
Ecology ; 93(6): 1353-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22834376

RESUMO

The factors that determine species' range limits are of central interest to biologists. One particularly interesting group comprises odonates (dragonflies and damselflies), which show large differences in secondary sexual traits and respond quickly to climatic factors, but often have minor interspecific niche differences, challenging models of niche-based species coexistence. We quantified the environmental niches at two geographic scales to understand the ecological causes of northern range limits and the coexistence of two congeneric damselflies (Calopteryx splendens and C. virgo). Using environmental niche modeling, we quantified niche divergence first across the whole geographic range in Fennoscandia, and second only in the sympatric part of this range. We found evidence for interspecific divergence along the environmental axes of temperature and precipitation across the northern range in Fennoscandia, suggesting that adaptation to colder and wetter climate might have allowed C. virgo to expand farther north than C. splendens. However, in the sympatric zone in southern Fennoscandia we found only negligible and nonsignificant niche differences. Minor niche differences in sympatry lead to frequent encounters and intense interspecific sexual interactions at the local scale of populations. Nevertheless, niche differences across Fennoscandia suggest that species differences in physiological tolerances limit range expansions northward, and that current and future climate could have large effects on the distributional ranges of these and ecologically similar insects.


Assuntos
Adaptação Fisiológica/fisiologia , Clima , Ecossistema , Insetos/fisiologia , Animais , Demografia , Monitoramento Ambiental , Feminino , Masculino , Modelos Biológicos , Países Escandinavos e Nórdicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...