Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10769, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750792

RESUMO

Well-defined fluid flows are the hallmark feature of microfluidic culture systems and enable precise control over biophysical and biochemical cues at the cellular scale. Microfluidic flow control is generally achieved using displacement-based (e.g., syringe or peristaltic pumps) or pressure-controlled techniques that provide numerous perfusion options, including constant, ramped, and pulsed flows. However, it can be challenging to integrate these large form-factor devices and accompanying peripherals into incubators or other confined environments. In addition, microfluidic culture studies are primarily carried out under constant perfusion conditions and more complex flow capabilities are often unused. Thus, there is a need for a simplified flow control platform that provides standard perfusion capabilities and can be easily integrated into incubated environments. To this end, we introduce a tunable, 3D printed micro pressure regulator (µPR) and show that it can provide robust flow control capabilities when combined with a battery-powered miniature air pump to support microfluidic applications. We detail the design and fabrication of the µPR and: (i) demonstrate a tunable outlet pressure range relevant for microfluidic applications (1-10 kPa), (ii) highlight dynamic control capabilities in a microfluidic network, (iii) and maintain human umbilical vein endothelial cells (HUVECs) in a multi-compartment culture device under continuous perfusion conditions. We anticipate that our 3D printed fabrication approach and open-access designs will enable customized µPRs that can support a broad range of microfluidic applications.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Técnicas de Cultura de Células/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Perfusão , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA