Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(13): 130401, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206422

RESUMO

The most well-known tool for studying contextuality in quantum computation is the n-qubit Stabilizer state tableau representation. We provide an extension that not only describes the quantum state but is also outcome deterministic. The extension enables a value assignment to exponentially many Pauli observables, yet it remains quadratic in both memory and computational complexity. Furthermore, we show that the mechanisms employed for contextuality and measurement disturbance are wholly separate. The model will be useful for investigating the role of contextuality in n-qubit quantum computation.

2.
Entropy (Basel) ; 21(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33267513

RESUMO

Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, such as the Deutsch-Jozsa and Simon's algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor's algorithm for integer factorization.

3.
Phys Rev Lett ; 121(19): 190401, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468593

RESUMO

Entanglement is an invaluable resource for fundamental tests of physics and the implementation of quantum information protocols such as device-independent secure communications. In particular, time-bin entanglement is widely exploited to reach these purposes both in free space and optical fiber propagation, due to the robustness and simplicity of its implementation. However, all existing realizations of time-bin entanglement suffer from an intrinsic postselection loophole, which undermines their usefulness. Here, we report the first experimental violation of Bell's inequality with "genuine" time-bin entanglement, free of the postselection loophole. We introduced a novel function of the interferometers at the two measurement stations, that operate as fast synchronized optical switches. This scheme allowed us to obtain a postselection-loophole-free Bell violation of more than 9 standard deviations. Since our scheme is fully implementable using standard fiber-based components and is compatible with modern integrated photonics, our results pave the way for the distribution of genuine time-bin entanglement over long distances.

4.
Phys Rev Lett ; 115(15): 150401, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550710

RESUMO

The notion of (non)contextuality pertains to sets of properties measured one subset (context) at a time. We extend this notion to include so-called inconsistently connected systems, in which the measurements of a given property in different contexts may have different distributions, due to contextual biases in experimental design or physical interactions (signaling): a system of measurements has a maximally noncontextual description if they can be imposed a joint distribution on in which the measurements of any one property in different contexts are equal to each other with the maximal probability allowed by their different distributions. We derive necessary and sufficient conditions for the existence of such a description in a broad class of systems including Klyachko-Can-Binicioglu-Shumvosky-type (KCBS), EPR-Bell-type, and Leggett-Garg-type systems. Because these conditions allow for inconsistent connectedness, they are applicable to real experiments. We illustrate this by analyzing an experiment by Lapkiewicz and colleagues aimed at testing contextuality in a KCBS-type system.

5.
Phys Rev Lett ; 115(3): 030503, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230776

RESUMO

Device-independent quantum communication will require a loophole-free violation of Bell inequalities. In typical scenarios where line of sight between the communicating parties is not available, it is convenient to use energy-time entangled photons due to intrinsic robustness while propagating over optical fibers. Here we show an energy-time Clauser-Horne-Shimony-Holt Bell inequality violation with two parties separated by 3.7 km over the deployed optical fiber network belonging to the University of Concepción in Chile. Remarkably, this is the first Bell violation with spatially separated parties that is free of the postselection loophole, which affected all previous in-field long-distance energy-time experiments. Our work takes a further step towards a fiber-based loophole-free Bell test, which is highly desired for secure quantum communication due to the widespread existing telecommunication infrastructure.

6.
Phys Rev Lett ; 115(25): 250401, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722905

RESUMO

Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

7.
Sci Adv ; 1(11): e1500793, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26824059

RESUMO

Photonic systems based on energy-time entanglement have been proposed to test local realism using the Bell inequality. A violation of this inequality normally also certifies security of device-independent quantum key distribution (QKD) so that an attacker cannot eavesdrop or control the system. We show how this security test can be circumvented in energy-time entangled systems when using standard avalanche photodetectors, allowing an attacker to compromise the system without leaving a trace. We reach Bell values up to 3.63 at 97.6% faked detector efficiency using tailored pulses of classical light, which exceeds even the quantum prediction. This is the first demonstration of a violation-faking source that gives both tunable violation and high faked detector efficiency. The implications are severe: the standard Clauser-Horne-Shimony-Holt inequality cannot be used to show device-independent security for energy-time entanglement setups based on Franson's configuration. However, device-independent security can be reestablished, and we conclude by listing a number of improved tests and experimental setups that would protect against all current and future attacks of this type.

8.
Worm ; 2(1): e23701, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058861

RESUMO

The intestine of Caenorhabditis elegans is derived from 20 cells that are organized into nine intestinal rings. During embryogenesis, three of the rings rotate approximately 90 degrees in a process known as intestinal twist. The underlying mechanisms for this morphological event are not fully known, but it has been demonstrated that both left-right and anterior-posterior asymmetry is required for intestinal twist to occur. We have recently presented a rule-based meta-Boolean tree model intended to describe complex lineages. In this report we apply this model to the E lineage of C. elegans, specifically targeting the asymmetric anterior-posterior division patterns within the lineage. The resulting model indicates that cells with the same factor concentration are located next to each other in the intestine regardless of lineage origin. In addition, the shift in factor concentrations coincides with the boundary for intestinal twist. When modeling lit-1 mutant data according to the same principle, the factor distributions in each cell are altered, yet the concurrence between the shift in concentration and intestinal twist remains. This pattern suggests that intestinal twist is controlled by a threshold mechanism. In the current paper we present the factor concentrations for all possible combinations of symmetric and asymmetric divisions in the E lineage and relate these to the potential threshold by studying existing data for wild-type and mutant embryos. Finally, we discuss how the resulting models can serve as a basis for experimental design in order to reveal the underlying mechanisms of intestinal twist.

9.
Phys Rev Lett ; 109(25): 250402, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368436

RESUMO

Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in a state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.

10.
Phys Rev Lett ; 98(22): 220402, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677821

RESUMO

In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon nonmaximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...