Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640762

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found.


Assuntos
Anfípodes , Ingestão de Alimentos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Anfípodes/fisiologia , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
2.
Environ Pollut ; 315: 120422, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244496

RESUMO

Per-and polyfluoroalkyl substances (PFAS) is a collective name for approximately 4700 synthetic chemicals ubiquitous in the aquatic environment worldwide. They are used in a wide array of products and are found in living organisms around the world. Some PFAS have been associated with cancer, developmental toxicity, endocrine disruption, and other health effects. Only a fraction of PFAS are currently monitored and regulated and the presence and effects on aquatic organisms of many PFAS are largely unknown. The aim of this study is to investigate the health effects of environmentally relevant concentrations of PFAS on aquatic organisms at different consumer trophic levels through a systematic review and meta-analysis. The main result shows that PFAS in concentrations up to 13.5 µg/L have adverse effects on body size variables for secondary consumers. However, no significant effects on liver or gonad somatic indices and neither on fecundity were found. In addition, the results show that there are large research gaps for PFAS effects on different organisms in aquatic environments at environmentally relevant concentrations. Most studies have been performed on secondary consumers and there is a substantial lack of studies on other consumers in aquatic ecosystems.


Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Organismos Aquáticos , Ecossistema
3.
Am J Bot ; 109(1): 67-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34648178

RESUMO

PREMISE: Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia-old resting spores buried in sediments. We show for the first time the revival, viability, and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0 to 80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present. METHODS: Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species. RESULTS: We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and that the vegetative reproduction in recent and ancient resting spores varies. The time taken to germinate is three hours to 2 to 3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores, respectively. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri. CONCLUSIONS: We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies.


Assuntos
Diatomáceas , Microscopia Eletrônica de Varredura , Esporos
4.
Ecol Evol ; 9(16): 8953-8964, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31462994

RESUMO

This study is the first large-scale genetic population study of a widespread climax species of seagrass, Thalassia hemprichii, in the Western Indian Ocean (WIO). The aim was to understand genetic population structure and connectivity of T. hemprichii in relation to hydrodynamic features. We genotyped 205 individual seagrass shoots from 11 sites across the WIO, spanning over a distance of ~2,700 km, with twelve microsatellite markers. Seagrass shoots were sampled in Kenya, Tanzania (mainland and Zanzibar), Mozambique, and Madagascar: 4-26°S and 33-48°E. We assessed clonality and visualized genetic diversity and genetic population differentiation. We used Bayesian clustering approaches (TESS) to trace spatial ancestry of populations and used directional migration rates (DivMigrate) to identify sources of gene flow. We identified four genetically differentiated groups: (a) samples from the Zanzibar channel; (b) Mozambique; (c) Madagascar; and (d) the east coast of Zanzibar and Kenya. Significant pairwise population genetic differentiation was found among many sites. Isolation by distance was detected for the estimated magnitude of divergence (D EST), but the three predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) also determine genetic connectivity and genetic structure. Directional migration rates indicate that Madagascar acts as an important source population. Overall, clonality was moderate to high with large differences among sampling sites, indicating relatively low, but spatially variable sexual reproduction rates. The strongest genetic break was identified for three sites in the Zanzibar channel. Although isolation by distance is present, this study suggests that the three regionally predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) rather than distance determine genetic connectivity and structure of T. hemprichii in the WIO. If the goal is to maintain genetic connectivity of T. hemprichii within the WIO, conservation planning and implementation of marine protection should be considered at the regional scale-across national borders.

5.
Aquat Toxicol ; 207: 142-152, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572174

RESUMO

The synthetic estrogen 17α-ethinylestradiol (EE2), ubiquitous in the aquatic environment and commonly detected in sewage effluents, interferes with the endocrine system in multiple ways. Exposure during sensitive windows of development causes persistent effects on fertility, reproductive and non-reproductive behavior in mammals and fish. In the present study, three-spined stickleback (Gasterosteus aculeatus) were exposed to nominal 0 and 20 ng/L EE2 from fertilization to 7 weeks post-hatch. After 8 months of remediation in clean water three non-reproductive behaviors, not previously analyzed in developmentally EE2-exposed progeny of wild-caught fish, were evaluated. Chemical analysis revealed that the nominal 0 and 20 ng/L exposure contained 5 and 30 ng/L EE2, respectively. Therefore, the use of control fish from previous experiments was necessary for comparisons. Fish exposed during development showed significant concentration-dependent reduction in anxiety-like behavior in the scototaxis (light/dark preference) test by means of shorter latency to first entrance to the white compartment, more visits in white, and longer total time in white compared to unexposed fish. In the novel tank test, developmental exposure significantly increased the number of transitions to the upper half of the aquaria. Exposure to EE2 during development did not alter shoal cohesion in the shoaling test compared with unexposed fish but fish exposed to 30 ng/L EE2 had significantly longer latency to leave the shoal and fewer transitions away from the shoal compared to fish exposed to 5 ng/L EE2. Skewed sex ratio with more females, sex reversal in genetic males as well as intersex in males was observed after exposure to 30, but not 5 ng/L EE2. In conclusion, EE2 exposure during development in three-spined stickleback resulted in persistent effects on anxiety-like behaviors. These long-term effects from developmental exposure are likely to be of higher relevance for natural populations than are short-term effects from adult exposure.


Assuntos
Comportamento Animal , Exposição Ambiental , Etinilestradiol/toxicidade , Feminização/induzido quimicamente , Reprodução/efeitos dos fármacos , Smegmamorpha/crescimento & desenvolvimento , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Gônadas/efeitos dos fármacos , Gônadas/patologia , Masculino , Razão de Masculinidade , Smegmamorpha/genética
6.
Aquat Toxicol ; 198: 240-256, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29558709

RESUMO

Anthropogenic pollution including metals, petroleum, toxins, nutrients and many others is a growing problem in the marine environment. These are important factors altering the environment and by that the fate of many local populations of marine organisms. The aim of this study was to assess the impact of selected point pollution sources on resident populations of the blue mussel (Mytilus edulis trossulus) in the Baltic Sea using multiple biomarker approach. The study used a nested sampling scheme in which sites from reference (REF) habitats are geographically paired with selected sites from sewage treatment plants (STP) and harbors (HAR). The results showed that mussels from harbors had a higher frequency of histological abnormalities in the digestive gland compared to mussels from sewage effluent affected areas and reference sites. However these mussels together with mussels from STPs had higher lipid content, body mass index (BMI) and gonado-somatic index (GSI) compared to mussels from reference sites. A marked spatial variability was found with a stronger toxicity of ambient environment affecting resident mussel populations in the Gulf of Gdansk area, while an opposite pattern was found in Tvärminne area. Yet the blue mussels sampled in the Gulf of Gdansk were characterized by the highest GSI and BMI values compared to Askö and Tvärminne populations. No differences in analyzed biomarker response related to species identity, measured by a species-specific genetic marker, were found indicative of strong genetic introgression in the Baltic Proper.


Assuntos
Biomarcadores/análise , Monitoramento Ambiental , Mytilus edulis/metabolismo , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Animais , Índice de Massa Corporal , Feminino , Geografia , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Modelos Lineares , Lipídeos/química , Masculino , Testes para Micronúcleos , Mytilus edulis/efeitos dos fármacos , Oceanos e Mares , Razão de Masculinidade
7.
PeerJ ; 4: e2628, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812424

RESUMO

Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...