Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 14(1): 160, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930162

RESUMO

Triboelectric nanogenerators (TENGs) have potential to achieve energy harvesting and condition monitoring of oils, the "lifeblood" of industry. However, oil absorption on the solid surfaces is a great challenge for oil-solid TENG (O-TENG). Here, oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties. The designed O-TENG can generate an excellent electricity (with a charge density of 9.1 µC m-2 and a power density of 1.23 mW m-2), which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide. It also has a significant durability (30,000 cycles) and can power a digital thermometer for self-powered sensor applications. Further, a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils. The O-TENG can detect particle contaminants at least down to 0.01 wt% and water contaminants down to 100 ppm, which are much better than previous online monitoring methods (particle > 0.1 wt%; water > 1000 ppm). More interesting, the developed O-TENG can also distinguish water from other contaminants, which means the developed O-TENG has a highly water-selective performance. This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.

2.
Front Sports Act Living ; 4: 844883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392593

RESUMO

Of the medals awarded at the 2022 Winter Olympics in Beijing, 24% were for events involving cross-country skiing, the biathlon and Nordic combined. Although much research has focused on physiological and biomechanical characteristics that determine success in these sports, considerably less is yet known about the resistive forces. Here, we specifically describe what is presently known about ski-snow friction, one of the major resistive forces. Today, elite ski races take place on natural and/or machine-made snow. Prior to each race, several pairs of skis with different grinding and waxing of the base are tested against one another with respect to key parameters, such as how rapidly and for how long the ski glides, which is dependent on ski-snow friction. This friction arises from a combination of factors, including compaction, plowing, adhesion, viscous drag, and water bridging, as well as contaminants and dirt on the surface of and within the snow. In this context the stiffness of the ski, shape of its camber, and material composition and topography of the base exert a major influence. An understanding of the interactions between these factors, in combination with information concerning the temperature and humidity of both the air and snow, as well as the nature of the snow, provides a basis for designing specific strategies to minimize ski-snow friction. In conclusion, although performance on "narrow skis" has improved considerably in recent decades, future insights into how best to reduce ski-snow friction offer great promise for even further advances.

3.
ACS Nano ; 15(7): 11869-11879, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34170109

RESUMO

An intelligent monitoring lubricant is essential for the development of smart machines because unexpected and fatal failures of critical dynamic components in the machines happen every day, threatening the life and health of humans. Inspired by the triboelectric nanogenerators (TENGs) work on water, we present a feasible way to prepare a self-powered triboelectric sensor for real-time monitoring of lubricating oils via the contact electrification process of oil-solid contact (O-S TENG). Typical intruding contaminants in pure base oils can be successfully monitored. The O-S TENG has very good sensitivity, which even can respectively detect at least 1 mg mL-1 debris and 0.01 wt % water contaminants. Furthermore, the real-time monitoring of formulated engine lubricating oil in a real engine oil tank is achieved. Our results show that electron transfer is possible from an oil to solid surface during contact electrification. The electrical output characteristic depends on the screen effect from such as wear debris, deposited carbons, and age-induced organic molecules in oils. Previous work only qualitatively identified that the output ability of liquid can be improved by leaving less liquid adsorbed on the TENG surface, but the adsorption mass and adsorption speed of liquid and its consequences for the output performance were not studied. We quantitatively study the internal relationship between output ability and adsorbing behavior of lubricating oils by quartz crystal microbalance with dissipation (QCM-D) for liquid-solid contact interfaces. This study provides a real-time, online, self-powered strategy for intelligent diagnosis of lubricating oils.

4.
Sci Rep ; 10(1): 22250, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335109

RESUMO

A ball-on-disc machine was employed in a highly idealised setting to study the interplay between oil film formation and surface irregularities in single-sided rough elasto-hydrodynamic lubricated (EHL) conjunctions. The tests were operated under GPa pressures and high slide-to-roll ratios in a situation where the separating gap was smaller than the combined surface roughness height. Under the initial state of solid contact interference and with the operating conditions held fixed, surfaces were found to gradually conform such that a fully separating oil film of nanometre thickness eventually developed-a thin film lubrication state known as micro-EHL. Additionally, with a previously developed approach for 3D surface re-location analysis, we were able to very precisely specify the pertained nature of surface transformations, even at the asperity scale, by comparing the post-test surfaces to those in the virgin state. The surface roughness Sq was reduced by up to 17% after running-in, while the speed required for full film EHL was reduced by a remarkable 90%. Hence, full film EHL is possible even in cases where the Λ-ratio falsely suggests boundary lubrication. This discrepancy was attributed to the way surfaces are deformed inside the contact, i.e., through the establishment of micro-EHL.

5.
Sci Rep ; 9(1): 13262, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519987

RESUMO

Intelligent control of friction is an attractive but challenging topic and it has rarely been investigated for full size engineering applications. In this work, it is instigated if it would be possible to adjust friction by controlling viscosity in a lubricated contact. By exploiting the ability to adjust the viscosity of the switchable ionic liquids, 1,8-Diazabicyclo (5.4.0) undec-7-ene (DBU)/ glycerol mixture via the addition of CO2, the friction could be controlled in the elastohydrodynamic lubrication (EHL) regime. The friction decreased with increasing the amount of CO2 to the lubricant and increased after partial releasing CO2. As CO2 was absorbed by the liquid, the viscosity of the liquid increased which resulted in that the film thickness increased. At the same time the pressure-viscosity coefficient decreased with the addition of CO2. When CO2 was released again the friction increased and it was thus possible to control friction by adding or removing CO2.

6.
Proc Math Phys Eng Sci ; 472(2190): 20160069, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436975

RESUMO

Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern.

7.
Faraday Discuss ; 156: 343-60; discussion 413-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285638

RESUMO

A model for tribofilm growth is developed. The model is used in combination with numerical contact mechanics tools to enable evaluation of the combined effects of chemistry and contact mechanics. The model is tuned with experimental data and is thereafter applied to rough surfaces. The growth of the tribofilm is evaluated for 3 different contact cases and short-term tribofilm growth behaviour is analyzed. The results show how tribofilms grow in patches. The model is expected to be used as a tool for analysis of the interaction between rough surfaces.

8.
Immunology ; 108(1): 98-108, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12519308

RESUMO

Allergic airway inflammation induced in mice is T-cell dependent and recruitment of eosinophils to airspaces requires both alphabeta and gammadelta T cells. From previous studies it is evident that alphabeta T cells are essential for the allergic T helper type 2 (Th2)-like response, while the mechanistic contribution of gammadelta T cells is still unclear. In this study, we have investigated the role of gammadelta T cells in allergic airway eosinophilia induced by ovalbumin hypersensitivity. By comparing the responsiveness to sensitizing allergen of wild-type mice with that of T-cell receptor gammadelta knockout mice (TCRgammadelta KO) we demonstrated that mice lacking gammadelta T cells are defective in the systemic ovalbumin-specific immunoglobulin E (IgE) response. Furthermore, after aerosol challenge with allergen, gammadelta T-cell deficient mice exhibited a significantly decreased migration of B cells and natural killer cells to airways and reduced levels of allergen-specific IgG and IgA in bronchoalveolar lavage fluid. The role for B cells in the airway inflammation was indicated by the impaired ability of mice lacking functional B cells to evoke an eosinophilic response. The diminished eosinophilia in TCRgammadelta KO mice could not be explained by a defective Th2 activation since these mice displayed a normal IgG response in serum and an unaffected IG2b/IgG1 ratio in airways. Analysis of immunoregulatory cytokines in isolated lung tissue, thoracic lymph nodes and spleen further supported the notion that these mice are able to evoke a sufficient activation of T helper cells and that gammadelta T cells are not required for maintaining the Th2 profile. These results indicate that gammadelta T cells contribute to allergic airway inflammation by pathways separate from classical Th2 immune activation.


Assuntos
Linfócitos B/imunologia , Imunoglobulina E/biossíntese , Eosinofilia Pulmonar/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Receptores de Antígenos de Linfócitos T gama-delta/análise , Hipersensibilidade Respiratória/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/biossíntese , Citocinas/genética , Expressão Gênica , Imunoglobulina G/biossíntese , Pulmão/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...