Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1174171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251753

RESUMO

Introduction: Differentiation of spore mother cells marks the somatic-to-reproductive transition in higher plants. Spore mother cells are critical for fitness because they differentiate into gametes, leading to fertilization and seed formation. The female spore mother cell is called the megaspore mother cell (MMC) and is specified in the ovule primordium. The number of MMCs varies by species and genetic background, but in most cases, only a single mature MMC enters meiosis to form the embryo sac. Multiple candidate MMC precursor cells have been identified in both rice and Arabidopsis, so variability in MMC number is likely due to conserved early morphogenetic events. In Arabidopsis, the restriction of a single MMC per ovule, or MMC singleness, is determined by ovule geometry. To look for potential conservation of MMC ontogeny and specification mechanisms, we undertook a morphogenetic description of ovule primordium growth at cellular resolution in the model crop maize. Methods: We generated a collection of 48 three-dimensional (3D) ovule primordium images for five developmental stages, annotated for 11 cell types. Quantitative analysis of ovule and cell morphological descriptors allowed the reconstruction of a plausible developmental trajectory of the MMC and its neighbors. Results: The MMC is specified within a niche of enlarged, homogenous L2 cells, forming a pool of candidate archesporial (MMC progenitor) cells. A prevalent periclinal division of the uppermost central archesporial cell formed the apical MMC and the underlying cell, a presumptive stack cell. The MMC stopped dividing and expanded, acquiring an anisotropic, trapezoidal shape. By contrast, periclinal divisions continued in L2 neighbor cells, resulting in a single central MMC. Discussion: We propose a model where anisotropic ovule growth in maize drives L2 divisions and MMC elongation, coupling ovule geometry with MMC fate.

2.
Plant Sci ; 321: 111313, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696913

RESUMO

The growth and composition of fleshy fruits depend on resource acquisition and distribution in the plant. In tomato, the pedicel serves as the final connection between plant and fruit. However, very few quantitative data are available for the conducting tissues of the pedicel, nor is their genetic variability known. In the present study, a histological approach was combined with process-based modeling to evaluate the potential contribution made by the anatomy and histology of the pedicel to variations in fruit mass. Eleven genotypes were characterized and the impact of water deficit was studied for a single genotype using stress intensity and stage of application as variables. The results highlighted extensive variations in the relative proportions of the different pedicel tissues and in the absolute areas of xylem and phloem between genotypes. The model suggests that the variations in the area of the pedicel's vascular tissues induced by differences in genotype and water-deficit environments partly contributed to fruit mass variability. They therefore warrant phenotyping for use in the development of plant strains adapted to future environmental constraints. The results also demonstrated the need to develop non-invasive in vivo measurement methods to establish the number and size of active vessels and the flow rates in these vessels to improve prediction of water fluxes in plant architecture.


Assuntos
Solanum lycopersicum , Frutas/genética , Genótipo , Solanum lycopersicum/genética , Água , Xilema
3.
PLoS One ; 15(11): e0238736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33211715

RESUMO

Crown roots constitute the main part of the rice root system. Several key genes involved in crown root initiation and development have been identified by functional genomics approaches. Nevertheless, these approaches are impaired by functional redundancy and mutant lethality. To overcome these limitations, organ targeted transcriptome analysis can help to identify genes involved in crown root formation and early development. In this study, we generated an atlas of genes expressed in developing crown root primordia in comparison with adjacent stem cortical tissue at three different developmental stages before emergence, using laser capture microdissection. We identified 3975 genes differentially expressed in crown root primordia. About 30% of them were expressed at the three developmental stages, whereas 10.5%, 19.5% and 12.8% were specifically expressed at the early, intermediate and late stages, respectively. Sorting them by functional ontology highlighted an active transcriptional switch during the process of crown root primordia formation. Cross-analysis with other rice root development-related datasets revealed genes encoding transcription factors, chromatin remodeling factors, peptide growth factors, and cell wall remodeling enzymes that are likely to play a key role during crown root primordia formation. This atlas constitutes an open primary data resource for further studies on the regulation of crown root initiation and development.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Transcriptoma/genética , Parede Celular/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lasers , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcrição Gênica/genética
4.
J Exp Bot ; 71(22): 7046-7058, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32842152

RESUMO

In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Sistemas CRISPR-Cas , Meiose , Mutagênese , Oryza/genética
5.
Front Plant Sci ; 10: 1065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552069

RESUMO

Fruitlet core rot is one of the major postharvest disease of pineapple (Ananas comosus var. comosus). In the past, control strategies were designed to eliminate symptoms without addressing their causes or mechanisms, thus achieving only moderate success. In this study, (i) we focused on the anatomy of the fruitlets in the resistant "MD-2" and susceptible "Queen" pineapple cultivars; (ii) we identified the key role of the carpel margin in the infection process; (iii) we identified the key role of the sinuous layer of thick-walled cells in the inhibition of Fusarium ananatum colonization; and (iv) we linked the anatomy of the fruitlets with the phenolic content of cell walls. The fruitlet anatomy of the two cultivars was studied using X-ray, fluorescence, and multiphoton microscopy. Sepals and bracts were not perfectly fused with each other, allowing the pathogen to penetrate the fruit even after flowering. In fact, the fungi were found in the blossom cups of both cultivars but only became pathogenic in the flesh of the "Queen" pineapple fruit under natural conditions. The outer layer of the "MD-2" cavity was continuous with thick cell walls composed of ferulic and coumaric acids. The cell walls of the "Queen" blossom cup were less lignified at the extremities, and the outer layer was interspersed with cracks. The carpel margins were fused broadly in the "MD-2" pineapple, in contrast to the "Queen" pineapple. This blemish allows the fungus to penetrate deeper into the susceptible cultivar. In pineapple fruitlets, the hyphae of F. ananatum mainly progressed directly between cell walls into the parenchyma but never reached the vascular region. A layer of thick-walled cells, in the case of the resistant cultivar, stopped the colonization, which were probably the infralocular septal nectaries. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to F. ananatum. The major phenolics bound to the cell walls were coumaric and ferulic acids and were found in higher amounts in the resistant cultivar postinoculation. The combination of fruitlet anatomy and lignification plays a role in the mechanism of host resistance to fruitlet core rot.

6.
Rev. colomb. biotecnol ; 18(2): 112-118, jul.-dic. 2016. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-959847

RESUMO

La conservación in vitro de Dioscorea alata L. clon Caraqueño es fundamental para garantizar la propagación y distribución de material de plantación sano a los productores, y disponer de un banco in vitro de un clon de gran valor agronómico y comercial en la región oriental de Cuba. Con el fin de evaluar las modificaciones anatómicas que se producen en plantas de ñame en tres condiciones de cultivo in vitro: plantas conservadas por métodos de mínimo crecimiento, plantas regeneradas y plantas en fase de multiplicación en el medio MS 75 %, se realizó un análisis de la anatomía foliar y caulinar a partir de cortes transversales de la lámina foliar y del tallo, y cortes longitudinales y transversales de microtubérculos formados durante el proceso de conservación. Las hojas de las plantas conservadas mostraron menor espesor del mesófilo y la epidermis y el área de los haces conductores del tallo también fue menor, debido al proceso de stress durante la conservación in vitro. Sin embargo, durante la recuperación del material conservado a través de la regeneración y la multiplicación in vitro se restablecieron de manera normal estos parámetros. También se evidenció que los microtubérculos formados en la conservación in vitro, poseen parénquima amilífero con abundantes gránulos de almidón, capa delgada de parénquima cortical, y haces conductores poco desarrollados, todo lo cual indica la presencia de actividad meristemática.


The in vitro conservation of Dioscorea alata L. clone Caraqueño is fundamental to guarantee the propagation and distribution of healthy plantation material to the farmers and the establishment of one in vitro bank of this clone of great agronomic and commercial value in the Oriental Region of Cuba. With the purpose of evaluating the anatomical modifications that take place in yam plants under three in vitro culture conditions: conserved plants by slow growth, regenerated plants and in plants multiplication phase in MS 75% medium, was carried out an analysis of the foliar and caulinar anatomy from transversal cuts of the foliar sheet and of the stem, and longitudinal and transversal cuts of microtubers formed during the conservation process. Smaller thickness of the mesophyll and of the epidermis in the leaves of the conserved plants were showed and the conductive sheaves area of the stem were also smaller, due to the stress process during the in vitro conservation. However during the recovery of the conserved material through the regeneration and the in vitro multiplication were reestablished to their normal state these parameters. It was also evidenced that the microtubers formed in the in vitro conservation, have reserve parenchyma with abundant starch granules, thin cortical parenchyma and conductive sheaves little developed were determined. All this characteristics indicated the presence of meristematic activity.

7.
BMC Plant Biol ; 16: 94, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095276

RESUMO

BACKGROUND: Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS: Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS: The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.


Assuntos
Adaptação Fisiológica/genética , Coffea/genética , Secas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Brotos de Planta/genética , Coffea/classificação , Coffea/fisiologia , Café/genética , Café/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
8.
J Exp Bot ; 65(9): 2427-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24683183

RESUMO

A multiple cell imaging approach combining immunofluorescence by confocal microscopy, fluorescence spectral analysis by multiphotonic microscopy, and transmission electron microscopy identified the site of accumulation of 4-O-(3-methoxybenzaldehyde) ß-d-glucoside, a phenol glucoside massively stockpiled by vanilla fruit. The glucoside is sufficiently abundant to be detected by spectral analysis of its autofluorescence. The convergent results obtained by these different techniques demonstrated that the phenol glucoside accumulates in the inner volume of redifferentiating chloroplasts as solid amorphous deposits, thus ensuring phenylglucoside cell homeostasis. Redifferentiation starts with the generation of loculi between thylakoid membranes which are progressively filled with the glucoside until a fully matured organelle is obtained. This peculiar mode of storage of a phenolic secondary metabolite is suspected to occur in other plants and its generalization in the Plantae could be considered. This new chloroplast-derived organelle is referred to as a 'phenyloplast'.


Assuntos
Frutas/metabolismo , Organelas/metabolismo , Fenol/metabolismo , Vanilla/metabolismo , Cloroplastos/metabolismo , Homeostase
9.
Protoplasma ; 251(6): 1387-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24692039

RESUMO

Most Tracheophyta synthesize-condensed tannins (also called proanthocyanidins), polymers of catechins, which appear in the vacuole as uniformly stained deposits-termed tannin accretions-lining the inner face of the tonoplast. A large body of evidence argues that tannins are formed in recently described thylakoid-derived organelles, the tannosomes, which are packed in membrane-bound shuttles (Brillouet et al. 2013); it has been suggested that shuttles agglomerate into tannin accretions. The aim of the study was to describe the ontogenesis of tannin accretions in members of the Tracheophyta. For this purpose, fresh specimens of young tissues from diverse Tracheophyta were cut, gently lacerated in paraformaldehyde, and examined using light, epifluorescence, confocal, and transmission electron microscopy. Fresh samples were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Our observations showed that vacuolar accretions (1 → 40 µm), that constitute the typical form of tannin storage in tannin-producing Tracheophyta, are formed by agglomeration (not fusion) of shuttles containing various proportions of chlorophylls and tannins.


Assuntos
Clorofila/metabolismo , Taninos/metabolismo , Traqueófitas/metabolismo , Vacúolos/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/ultraestrutura , Microscopia de Fluorescência , Especificidade de Órgãos , Traqueófitas/citologia , Traqueófitas/ultraestrutura , Vacúolos/ultraestrutura
10.
Protoplasma ; 251(1): 177-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23926078

RESUMO

In this work, we performed qualitative and quantitative observations of the cytological changes occurring in cells of yam (Dioscorea alata) in vitro shoot tips cryopreserved using the encapsulation-dehydration (E-D) technique. Shoot tip osmoprotection for 24 h in 1.25 M sucrose medium induced drastic changes in cellular cytological features, including high plasmolysis in all three cellular areas studied, the external cell layer (L1), one to three (L1-3) and seven to nine (L7-9) cell layers from the surface of the meristematic dome, pyknotic nuclei in meristematic area cells and disappearance of nucleoli. Nucleus size decreased significantly in all cellular areas studied. Nucleocytoplasmic ratio decreased significantly in L1-3 and L7-9 cells. Nuclear protein content increased, particularly in L1 and L1-3 cells. After physical dehydration, plasma membrane of numerous basal part cells was broken and intracellular soluble protein leakage was observed. Nucleus area and nucleocytoplasmic ratio decreased significantly in L7-9 cells. One week after cryopreservation, shoot tips showed regrowth and living cells had recovered their original morphology. In all cellular areas studied, nuclei had retrieved their original staining and nucleoli were visible. Original nucleus area values were recovered in L1-3 and L1 cells. The nucleocytoplasmic ratio retrieved its initial value in L1 cells but remained at levels observed after osmoprotection for L1-3 and L7-9 cells. The nuclear protein content had retrieved its original level. This investigation provided new insights in changes occurring in D. alata apices throughout an E-D protocol.


Assuntos
Criopreservação , Dioscorea/citologia , Brotos de Planta/citologia , Dessecação , Proteínas/química
11.
Protoplasma ; 251(3): 649-59, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24150426

RESUMO

In this work, we studied the impact of the successive steps of the droplet-vitrification protocol technique employed for cryopreservation of Rubia akane hairy roots on the features of cortical, pericycle and endoderm cells of apical and central root segments, using histology techniques and combining qualitative and quantitative observations. In apical segments, plasmolysis (22-71 %, depending on cell type) was observed only after the loading treatment and did not increase after the following steps of the protocol. By contrast, in central segments, plasmolysis (39-45 %) was already observed after the sucrose pretreatment; it increased to 54-68 %, depending on cell type, after the loading treatment, but no further changes were noted after treatment with the vitrification solution. After liquid nitrogen exposure and unloading treatment, deplasmolysis was more rapid in apical segments, with cortical and pericycle cells having retrieved their original features. In central segments, only cortical cells had retrieved their original features and endoderm and pericycle cells were still highly plasmolysed. Nuclei were more strongly impacted by the cryopreservation protocol in central segments, where they displayed a highly condensed nucleoplasm from the loading treatment onwards and had not retrieved their original aspect after the unloading treatment. By contrast, nuclei had a much less condensed nucleoplasm in cells of apical segments, and they had retrieved their original aspect after the unloading treatment.


Assuntos
Criopreservação , Rubia , Raízes de Plantas
12.
Front Plant Sci ; 5: 790, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25646121

RESUMO

We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex, and central metaxylem vessels), number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt stress responses of root anatomical parameters in rice (Oryza sativa L.). Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-olds stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex) but a decrease in external (peripheral) tissues (sclerenchyma, exodermis, and epidermis). Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

13.
Diagn Pathol ; 8: 92, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23829479

RESUMO

BACKGROUND: Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer's memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. RESULTS: We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. CONCLUSIONS: Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here:http://www.diagnosticpathology.diagnomx.eu/vs/5955513929846272.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia , Patologia/métodos , Software , Humanos , Valor Preditivo dos Testes , Interface Usuário-Computador
14.
Tree Physiol ; 33(6): 640-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23729274

RESUMO

In Coffea arabica L., the development of direct sowing of somatic embryos (SE) in planting substrate, with subsequent nursery production of plants, has promoted the industrialization of somatic embryogenesis. However, plant conversion rates are still low and require improvements to enhance the cost-effectiveness of commercial micropropagation. With the aim of improving plant regeneration from SE, we studied the morphological and histological criteria and water characteristics during germination and plant conversion of zygotic embryos (ZE) and SE. At the cotyledonary stage, SE produced in a 1 l RITA(®) temporary immersion bioreactor (area 55.8 cm(2)) were morphologically similar in size (2-3 mm) but abnormal as compared with mature ZE. Protein and starch reserve levels were extremely low throughout germination and conversion to plantlets, while the water status remained steady [water content (WC) from 76 to 87%, Ψ from -0.37 to -0.47 MPa, pressure potential from 0.69 to 0.24 MPa]. In ZE, spectacular hydration occurred during the first 3 weeks (WC from 37 to 75%; Ψ from -6.24 to -1.0 MPa). Cotyledons remained undifferentiated for 10 weeks after sowing. Conversely, after only 3 weeks under germination conditions in a RITA(®) bioreactor, spongy and palisade parenchyma and stomata formed in SE cotyledons. The ZE plant conversion was faster than that of SE (14 vs. 22 weeks) and more efficient (rates 96 vs. 55%), with much more substantial hypocotyl and cotyledon development. The use of a new 5 l MATIS(®) bioreactor (area 355 cm(2)), designed especially to favor embryo dispersion and light transmittance to SE, markedly improved the embryo-to-plantlet conversion rate (91%). These results highlight the morphological heterogeneity and lack of protein reserves in SE at the beginning of the germination phase and marked differences in water characteristics. However, they also reveal high phenotypic plasticity, leading to a highly efficient plantlet conversion rate due to better embryo dispersion and light transmittance in more horizontal bioreactors.


Assuntos
Coffea/crescimento & desenvolvimento , Fenótipo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Sementes/crescimento & desenvolvimento , Água/fisiologia , Reatores Biológicos , Coffea/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Germinação , Luz , Sementes/metabolismo , Amido/metabolismo , Zigoto
15.
Physiol Plant ; 143(2): 178-87, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21645001

RESUMO

Global DNA methylation was assessed by high-performance liquid chromatography (HPLC) for the first time in Eucalyptus urophylla×Eucalyptus grandis shoot tips comparing three outdoor and one in vitro sources of related genotypes differing in their physiological age. The DNA methylation levels found were consistent with those reported for other Angiosperms using the same HPLC technology. Notwithstanding noticeable time-related fluctuations within each source of plant material, methylation rate was overall higher for the mature clone (13.7%) than for the rejuvenated line of the same clone (12.6%) and for the juvenile offspring seedlings (11.8%). The in vitro microshoots of the mature clone were less methylated (11.3%) than the other outdoor origins, but the difference with the juvenile seedlings was not significant. Immunofluorescence investigations on shoot apices established that the mature source could be distinguished from the rejuvenated and juvenile origins by a higher density of cells with methylated nuclei in leaf primordia. Shoot apical meristems (SAMs) from the mature clone also showed a greater proportion and more methylated cells than SAMs from the rejuvenated and juvenile origins. The nuclei of these latter were characterized by fewer and more dispersed labeled spots than for the mature source. Our findings establish that physiological ageing induced quantitative and qualitative variations of DNA methylation at shoot tip, SAM and even cellular levels. Overall this DNA methylation increased with maturation and conversely decreased with rejuvenation to reach the lower scores and to show the immunolabeling patterns that characterized juvenile material nuclei.


Assuntos
Metilação de DNA , Eucalyptus/genética , Meristema/genética , Brotos de Planta/genética , Núcleo Celular/genética , Cromatografia Líquida de Alta Pressão , DNA de Plantas/genética , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/fisiologia , Imunofluorescência/métodos , Genótipo , Processamento de Imagem Assistida por Computador/métodos , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
16.
Plant Cell Environ ; 34(8): 1276-90, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477120

RESUMO

The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production.


Assuntos
Malus/genética , Transporte Biológico , Fenômenos Biofísicos , Genoma de Planta , Genótipo , Malus/anatomia & histologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Análise de Componente Principal , Locos de Características Quantitativas , Característica Quantitativa Herdável , Árvores/anatomia & histologia , Árvores/genética , Água , Xilema
17.
Ann Bot ; 108(8): 1477-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21303783

RESUMO

BACKGROUND AND AIMS: Oil palm, an unbranched perennial monocotyledon, possesses a single shoot apical meristem (SAM), which is responsible for the initiation of the entire above-ground structure of the plant. To compare the palm SAM structure with those of other monocots and to study variations in its structure throughout the life of the plant, its organization was characterized from the embryonic stage to that of the reproductive plant. METHODS: SAM structure was studied by a combination of stained histological sections, light and confocal microscopy, and serial section-based three-dimensional reconstructions. KEY RESULTS: The oil palm SAM is characterized by two developmental phases: a juvenile phase with a single tunica-corpus structure displaying a gradual increase in size; and a mature phase characterized by a stable size, a modified shape and an established histological zonation pattern. In mature plants, fluctuations in SAM shape and volume occur, mainly as a consequence of changes in the central zone, possibly in relation to leaf initiation. CONCLUSIONS: Development of the oil palm SAM is characterized by a juvenile to mature phase transition accompanied by establishment of a zonal pattern and modified shape. SAM zonation is dynamic during the plastochron period and displays distinct features compared with other monocots.


Assuntos
Arecaceae/citologia , Arecaceae/crescimento & desenvolvimento , Meristema/citologia , Meristema/crescimento & desenvolvimento , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento
18.
Mycorrhiza ; 21(4): 315-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21225294

RESUMO

The study of arbuscular mycorrhiza often requires the staining of fungal structures using specific dyes. Fluorescent dyes such as acid fuchsin and wheat germ agglutinin conjugates give excellent results, but these compounds are either hazardous or very expensive. Here, we show that a safer and inexpensive dye, Uvitex2B, can be efficiently used to stain intraradical fungal structures formed by the arbuscular mycorrhizal fungus Glomus intraradices in three plant species: carrot, Casuarina equisetifolia, and Medicago truncatula. The intensity and stability of Uvitex2B allow the acquisition of high-quality images using not only confocal laser scanning microscopy but also epifluorescence microscopy coupled with image deconvolution. Furthermore, we demonstrate that Uvitex2B and ß-glucuronidase staining are compatible and can thus be used to reveal arbuscular mycorrhizal structures in the context of promoter activation analysis.


Assuntos
Fungos/química , Glomeromycota/química , Micorrizas/química , Raízes de Plantas/microbiologia , Coloração e Rotulagem/métodos , Daucus carota/microbiologia , Corantes Fluorescentes/química , Glomeromycota/isolamento & purificação , Magnoliopsida/microbiologia , Medicago truncatula/microbiologia , Micorrizas/isolamento & purificação , Coloração e Rotulagem/instrumentação
19.
Nucleic Acids Res ; 32(Database issue): D364-7, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681435

RESUMO

TropGENE-DB, is a crop information system created to store genetic, molecular and phenotypic data of the numerous yet poorly documented tropical crop species. The most common data stored in TropGENE-DB are information on genetic resources (agro-morphological data, parentages, allelic diversity), molecular markers, genetic maps, results of quantitative trait loci analyses, data from physical mapping, sequences, genes, as well as the corresponding references. TropGENE-DB is organized on a crop basis with currently three running modules (sugarcane, cocoa and banana), with plans to create additional modules for rice, cotton, oil palm, coconut, rubber tree, pineapple, taro, yam and sorghum. The TropGENE-DB information system is accessible for consultation via the internet at http://tropgenedb.cirad.fr. Specific web consultation interfaces have been designed to allow quick consultations as well as complex queries.


Assuntos
Produtos Agrícolas/genética , Bases de Dados Genéticas , Plantas/genética , Clima Tropical , Biologia Computacional , Armazenamento e Recuperação da Informação , Internet , Locos de Características Quantitativas/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...