Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(11): 38, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032322

RESUMO

Purpose: Diabetic retinopathy (DR) is the leading cause of vision impairment in working-age adults. Automated screening can increase DR detection at early stages at relatively low costs. We developed and evaluated a cloud-based screening tool that uses artificial intelligence (AI), the LuxIA algorithm, to detect DR from a single fundus image. Methods: Color fundus images that were previously graded by expert readers were collected from the Canarian Health Service (Retisalud) and used to train LuxIA, a deep-learning-based algorithm for the detection of more than mild DR. The algorithm was deployed in the Discovery cloud platform to evaluate each test set. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were computed using a bootstrapping method to evaluate the algorithm performance and compared through different publicly available datasets. A usability test was performed to assess the integration into a clinical tool. Results: Three separate datasets, Messidor-2, APTOS, and a holdout set from Retisalud were evaluated. Mean sensitivity and specificity with 95% confidence intervals (CIs) reached for these three datasets were 0.901 (0.901-0.902) and 0.955 (0.955-0.956), 0.995 (0.995-0.995) and 0.821 (0.821-0.823), and 0.911 (0.907-0.912) and 0.880 (0.879-0.880), respectively. The usability test confirmed the successful integration of LuxIA into Discovery. Conclusions: Clinical data were used to train the deep-learning-based algorithm LuxIA to an expert-level performance. The whole process (image uploading and analysis) was integrated into the cloud-based platform Discovery, allowing more patients to have access to expert-level screening tools. Translational Relevance: Using the cloud-based LuxIA tool as part of a screening program may give diabetic patients greater access to specialist-level decisions, without the need for consultation.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Comportamento de Utilização de Ferramentas , Adulto , Humanos , Inteligência Artificial , Retinopatia Diabética/diagnóstico , Computação em Nuvem , Algoritmos
2.
Biochim Biophys Acta Gen Subj ; 1867(9): 130426, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451477

RESUMO

BACKGROUND: Increasing evidence suggests that glaucoma affects the ocular surface. We aimed to investigate the cellular mechanisms underlying the glaucoma-associated corneal alterations in an animal model. METHODS: Wistar rats underwent the cauterization of two episcleral veins of the left eye to elevate the intraocular pressure (ipsilateral, G-IL). Control animals received a sham procedure (C-IL). Contralateral eyes did not receive any procedure (G-CL or C-CL). Enzymes related to the redox status, oxidative damage to macromolecules, and inflammatory markers were assessed in corneal lysates. RESULTS: Compared to C-IL, NOX4, NOX2, and iNOS expression was increased in G-IL (68%, p < 0.01; 247%, p < 0.01; and 200%, p < 0.001, respectively). We found an increase in SOD activity in G-IL (60%, p < 0.05). The GSH/GSSG ratio decreased in G-IL (80%, p < 0.05), with a decrease in GR activity (40%, p < 0.05). G-IL displayed oxidative (90%, p < 0.01) and nitrosative (40%, p < 0.05) protein damage, and enhanced lipid peroxidation (100%, p < 0.01). G-IL group showed an increased in CD45, CD68 and F4/80 expression (50%, p < 0.05; 190%, p < 0.001 and 110%, p < 0.05, respectively). G-CL displayed a higher expression of Nrf2 (60%, p < 0.001) and increased activity of SOD, CAT, and GPx (60%, p < 0.05; 90%, p < 0.01; and 50%, p < 0.05, respectively). CONCLUSIONS: Glaucoma induces a redox imbalance in the ipsilateral cornea with an adaptive response of the contralateral one. GENERAL SIGNIFICANCE: Our study provides a possible mechanism involving oxidative stress and inflammation that explains the corneal alterations observed in glaucoma. We demonstrate that these changes extend not only to the ipsilateral but also to the contralateral cornea.


Assuntos
Glaucoma , Ratos , Animais , Ratos Wistar , Estresse Oxidativo/fisiologia , Oxirredução , Córnea/metabolismo , Superóxido Dismutase/metabolismo
3.
Front Immunol ; 12: 618597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841400

RESUMO

Air pollution is a serious environmental issue worldwide in developing countries' megacities, affecting the population's health, including the ocular surface, by predisposing or exacerbating other ocular diseases. Herpes simplex keratitis (HSK) is caused by the herpes simplex virus type 1 (HSV-1). The primary or recurring infection in the ocular site causes progressive corneal scarring that may result in visual impairment. The present study was designed to study the immunopathological changes of acute HSK under urban polluted air, using the acute HSK model combined with an experimental urban polluted air exposure from Buenos Aires City. We evaluated the corneal clinical outcomes, viral DNA and pro-inflammatory cytokines by RT-PCR and ELISA assays, respectively. Then, we determined the innate and adaptive immune responses in both cornea and local lymph nodes after HSV-1 corneal by immunofluorescence staining and flow cytometry. Our results showed that mice exposed to polluted air develop a severe form of HSK with increased corneal opacity, neovascularization, HSV-1 DNA and production of TNF-α, IL-1ß, IFN-γ, and CCL2. A high number of corneal resident immune cells, including activated dendritic cells, was observed in mice exposed to polluted air; with a further significant influx of bone marrow-derived cells including GR1+ cells (neutrophils and inflammatory monocytes), CD11c+ cells (dendritic cells), and CD3+ (T cells) during acute corneal HSK. Moreover, mice exposed to polluted air showed a predominant Th1 type T cell response over Tregs in local lymph nodes during acute HSK with decreased corneal Tregs. These findings provide strong evidence that urban polluted air might trigger a local imbalance of innate and adaptive immune responses that exacerbate HSK severity. Taking this study into account, urban air pollution should be considered a key factor in developing ocular inflammatory diseases.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Ceratite Herpética/etiologia , Ceratite Herpética/patologia , Animais , Biomarcadores , Córnea/imunologia , Córnea/metabolismo , Córnea/patologia , Opacidade da Córnea/diagnóstico por imagem , Opacidade da Córnea/etiologia , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Imunofluorescência , Herpesvirus Humano 1 , Humanos , Imunofenotipagem , Ceratite Herpética/diagnóstico por imagem , Ceratite Herpética/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Arch Biochem Biophys ; 701: 108815, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609537

RESUMO

Glaucoma is a neurodegenerative disease that affects eye structures and brain areas related to the visual system. Oxidative stress plays a key role in the development and progression of the disease. The aims of the present study were to evaluate the mitochondrial function and its participation in the brain redox metabolism in an experimental glaucoma model. 3-month-old female Wistar rats were subjected to cauterization of two episcleral veins of the left eye to elevate the intraocular pressure. Seven days after surgery, animals were sacrificed, the brain was carefully removed and the primary visual cortex was dissected. Mitochondrial bioenergetics and ROS production, and the antioxidant enzyme defenses from both mitochondrial and cytosolic fractions were evaluated. When compared to control, glaucoma decreased mitochondrial ATP production (23%, p < 0.05), with an increase in superoxide and hydrogen peroxide production (30%, p < 0.01 and 28%, p < 0.05, respectively), whereas no changes were observed in membrane potential and oxygen consumption rate. In addition, the glaucoma group displayed a decrease in complex II activity (34%, p < 0.01). Moreover, NOX4 expression was increased in glaucoma compared to the control group (27%, p < 0.05). Regarding the activity of enzymes associated with the regulation of the redox status, glaucoma showed an increase in mitochondrial SOD activity (34%, p < 0.05), mostly due to an increase in Mn-SOD (50%, p < 0.05). A decrease in mitochondrial GST activity was observed (11%, p < 0.05). GR and TrxR activity were decreased in both mitochondrial (16%, p < 0.05 and 20%, p < 0.05 respectively) and cytosolic (21%, p < 0.01 and 50%, p < 0.01 respectively) fractions in the glaucoma group. Additionally, glaucoma showed an increase in cytoplasmatic GPx (50%, p < 0.01). In this scenario, redox imbalance took place resulting in damage to mitochondrial lipids (39%, p < 0.01) and proteins (70%, p < 0.05). These results suggest that glaucoma leads to mitochondrial function impairment in brain visual targets, that is accompanied by an alteration in both mitochondrial and cytoplasmatic enzymatic defenses. As a consequence of redox imbalance, oxidative damage to macromolecules takes place and can further affect vital cellular functions. Understanding the role of the mitochondria in the development and progression of the disease could bring up new neuroprotective therapies.


Assuntos
Glaucoma/metabolismo , Mitocôndrias/metabolismo , Córtex Visual/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glaucoma/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , NADPH Oxidase 4/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Córtex Visual/patologia
5.
Exp Eye Res ; 200: 108225, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32898512

RESUMO

The aim of this study was to elucidate the intracellular sources of oxidant species, the antioxidant response as well as the main signaling pathways involved in the regulation of the redox balance in the primary visual cortex of rats subjected to an experimental glaucoma model. 3-month female Wistar strain rats were operated under a microscope by cauterizing two of the episcleral veins in order to elevate the intraocular pressure (glaucoma group); the control group received a sham procedure. Seven days after surgery, the animals were sacrificed, the brains were carefully removed, and the primary visual cortex was dissected. NADPH oxidase (NOX) activity, as well as the inducible nitric oxide synthase (iNOS) expression, the enzymatic antioxidant defenses, the metabolism of glutathione, and the translocation of Nuclear factor-erythroid 2-related factor-2 (Nrf2) and Nuclear factor k-light-chain-enhancer of activated B cells (NF-κB) were assessed. Compared to control, glaucoma group displayed an increase in NOX activity (147%, p < 0.05), leading to a rise in the steady state concentration of oxidant species. Specifically, NOX4 expression was higher (90%, p < 0.05), suggesting that it could be a source of H2O2. In addition, iNOS expression was increased in glaucoma (47%, p < 0.05), as a source of NO in the brain, induced by NF-κB translocation to the nucleus (48%, p < 0.01). An increase in primary antioxidant enzymes superoxide dismutase (40%, p < 0.01) and glutathione peroxidase (55%, p < 0.05) was observed as an adaptive response to reactive oxygen species (ROS) production. However, an alteration in glutathione metabolism was shown in glaucoma due to a decrease in its recycling (40%, p < 0.05) as well as in its de novo synthesis (53%, p < 0.05), leading to a decreased in reduced/oxidized glutathione ratio (55%, p < 0.001). Moreover, a lower expression of Nfr2 was shown in glaucoma (40%, p < 0.05), suggesting that the cell signaling pathway that regulates the antioxidant capacity is compromised. In this context, redox imbalance takes place, resulting in oxidative damage to both lipids (70%, p < 0.001) and proteins (140%, p < 0.001). These results suggest that glaucoma damages not only eye structures but also brain visual targets such as the primary visual cortex. Redox imbalance takes place due to an enhancement in ROS and reactive nitrogen species production from different sources, such as NOX family and iNOS, respectively, in an onset where the antioxidant defenses are overwhelmed due to an impaired Nrf2 signaling, leading to oxidative damage to macromolecules.


Assuntos
Glaucoma/metabolismo , Pressão Intraocular/fisiologia , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Ratos , Ratos Wistar
6.
Toxicol Appl Pharmacol ; 384: 114770, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628919

RESUMO

The aim of the study was to evaluate the time course of the effects of urban air pollutants on the ocular surface, focusing on the morphological changes, the redox balance, and the inflammatory response of the cornea. 8-week-old mice were exposed to urban or filtered air (UA-group and FA-group, respectively) in exposure chambers for 1, 2, 4, and 12 weeks. After each time, the eyes were enucleated and the corneas were isolated for biochemical analysis. UA-group corneas exhibited a continuous increase in NADPH oxidase-4 levels throughout the exposure time, suggesting an increased production of reactive oxygen species (ROS). After 1 week, an early adaptive response to ROS was observed as an increase in antioxidant enzymes. After 4 weeks, the enzymatic antioxidants were decreased, meanwhile an increase of the glutathione was shown, as a later compensatory antioxidant response. However, redox imbalance took place, evidenced by the increased oxidized proteins, which persisted up to 12 weeks. At this time point, corneal epithelium hyperplasia was also observed. The inflammatory response was modulated by the increase in IL-10 levels after 1 week, which early regulates the release of TNF-α and IL-6. These results suggest that air pollution alters the ocular surface, supported by the observed cellular hyperplasia. The redox imbalance and the inflammatory response modulated by IL-10 play a key role in the response triggered by air pollutants on the cornea. Taking into account this time course study, the ocular surface should also be considered as a relevant target of urban air pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Epitélio Corneano/patologia , Animais , Brasil , Cidades , Epitélio Corneano/efeitos dos fármacos , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Interleucina-10/metabolismo , Masculino , Camundongos , NADPH Oxidase 4/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Testes de Toxicidade Subaguda , Testes de Toxicidade Subcrônica
7.
Environ Res ; 167: 87-97, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30014900

RESUMO

Volcanic ash could pose a hazard to the ocular surface as it is constantly exposed to environmental particles. We exposed conjunctival cells to Puyehue-Cordón Caulle volcanic complex (PCCVC) or Calbuco ash particles and evaluated proliferation, viability, apoptosis, MUC1 expression, pro-inflammatory cytokines, and oxidative stress markers. Ash particles from these volcanoes vary in size, composition, and morphology. Our results demonstrate that PCCVC but not Calbuco ash particles induce cytotoxicity on human conjunctival epithelial cells viewed as a decrease in cell proliferation and the transmembrane mucin MUC1 expression; a pro-inflammatory response mediated by IL-6 and IL-8; and an imbalance of the redox environment leading to protein oxidative damage. This is the first in vitro study that assesses the biological effect of volcanic ash particles on human conjunctival epithelial cells and the involvement of inflammatory mediators and oxidative stress as the mechanisms of damage. Our results could provide a better understanding of the ocular symptoms manifested by people living near volcanic areas.


Assuntos
Inflamação , Estresse Oxidativo , Material Particulado , Erupções Vulcânicas , Poluentes Atmosféricos/toxicidade , Células Epiteliais , Humanos , Inflamação/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade
8.
Exp Eye Res ; 171: 37-47, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524384

RESUMO

The aim of this study was to evaluate the time course of oxidative stress markers and inflammatory mediators in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP) for 1, 3, and 24 h. Reactive oxygen species (ROS) production, lipid and protein oxidation, Nrf2 pathway activation, enzymatic antioxidants, glutathione (GSH) levels and synthesis, as well as cytokine release and cell proliferation were analyzed. Cells exposed to DEP showed an increase in ROS at all time points. The induction of NADPH oxidase-4 appeared later than mitochondrial superoxide anion production, when the cell also underwent a proinflammatory response mediated by IL-6. DEP exposure triggered the activation of Nrf2 in IOBA-NHC, as a strategy for increasing cellular antioxidant capacity. Antioxidant enzyme activities were significantly increased at early stages except for glutathione reductase (GR) that showed a significant decrease after a 3-h-incubation. GSH levels were found increased after 1 and 3 h of incubation with DEP, despite the increase in its consumption by the antioxidant enzymes as it works as a cofactor. GSH recycling and the de novo synthesis were responsible for the maintenance of its content at these time points, respectively. After 24 h, the decrease in GR and glutamate cysteine ligase as wells as the enhanced activity of glutathione peroxidase and glutathione S-transferase produced a depletion in the GSH pool. Lipid-peroxidation was found increased in cells exposed to DEP after 1-h-incubation, whereas protein oxidation was found increased in cells exposed to DEP after a 3-h-incubation that persisted after a longer exposure. Furthermore, DEP lead IOBA-NHC cells to hyperplasia after 1 and 3 h of incubation, but a decrease in cell proliferation was found after longer exposure. ROS production seems to be an earlier event triggered by DEP on IOBA-NHC, comparing to the proinflammatory response mediated by IL-6. Despite the fact that under short periods of exposure to DEP lipids and then proteins are targets of oxidative damage, the viability of the cells is not affected at early stages, since cell hyperplasia was detected as compensatory mechanism. Although after 24 h Nrf2 pathway is still enhanced, the epithelial cell capacity to maintain redox balance is exceeded. The antioxidant enzymes activation and the depleted GSH pool are not capable of counteracting the increased ROS production, leading to oxidative damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Túnica Conjuntiva/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos , Potenciais da Membrana/fisiologia , Mitocôndrias/metabolismo , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Peroxidase/metabolismo , Superóxidos/metabolismo
9.
Invest Ophthalmol Vis Sci ; 56(12): 7058-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26529041

RESUMO

PURPOSE: The aim of this study was to evaluate oxidative stress markers in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP). METHODS: Reactive oxygen (ROS) and nitrogen (RNS) species production; hydrogen peroxide (H2O2) levels; protein oxidation; antioxidant enzymes activities (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione S-transferase [GST], and glutathione reductase [GR]); total reactive antioxidant potential (TRAP); reduced (GSH) and oxidized glutathione (GSSG) were evaluated. Transmission electron microscopy was performed to evaluate DEP uptake. RESULTS: Diesel exhaust particles were entrapped by membrane protrusions developed by IOBA-NHC. Cells exposed to DEP 50 and 100 µg/mL showed a significant increase in ROS, RNS, H2O2 levels, SOD, GPx, and GST compared with the control group. A significant decay in GR was observed in both groups, meanwhile CAT levels remained unchanged. The group exposed to DEP 100 µg/mL displayed a significant increase in protein oxidation. In both groups, TRAP was significantly reduced as well as the GSH/GSSG ratio. CONCLUSIONS: The decrease in nonenzymatic antioxidants and the compensatory increase of SOD, GPX, and GST activities are consequence of the increase in ROS and RNS production due to DEP exposure and its accumulation inside the cells. The decay in GR activity leads to the decrease in GSH/GSSG recycling. These results suggest that oxidative stress could play an important role in the development of DEP effects on human conjunctival epithelial cells.


Assuntos
Túnica Conjuntiva/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos , Biomarcadores/metabolismo , Células Cultivadas , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão
10.
Food Funct ; 5(3): 557-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24477466

RESUMO

In a normal diet, the use of herbs may contribute significantly to the total intake of plant antioxidants and even be a better source of dietary antioxidants than many other food groups. Therefore, the aims of this study were to evaluate the protective effect of aqueous extracts of Aloysia triphylla (infusion and decoction) against lipid-peroxidation of brain homogenates and to determine changes in the prooxidant/antioxidant balance when the plant material is added. In order to elucidate a possible antioxidant mechanism in vitro evaluation of total antioxidant capacity, oxygen species scavenging ability and reducing power (RP) were studied. Tested extracts had shown a strong inhibition of lipid-peroxidation measured as thiobarbituric acid-reactive products of lipid-peroxidation (TBARS) and chemiluminescence. Furthermore, infusion and decoction exhibited free radical trapping ability, expressed by the capacity to scavenge superoxide and hydrogen peroxide. Additionally, both aqueous extracts presented antioxidant activity measured as total reactive antioxidant potential (TRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS) scavenging activity and RP. These results suggest that the lipid-peroxidation inhibition mechanism proposed is that the antioxidants present in Aloysia triphylla could act as strong scavengers of reactive oxygen species not only at the initiation of the lipid-peroxidation chain reaction, but also at the propagation step. Therefore, they could be used as prophylactic and therapeutic agents for those diseases where the occurrence of oxidative stress and lipid-peroxidation contributes to the progression of damage.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Extratos Vegetais/farmacologia , Verbenaceae/química , Animais , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...