Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 116: 102405, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824716

RESUMO

Over the past decade, deep-learning (DL) algorithms have become a promising tool to aid clinicians in identifying fetal head standard planes (FHSPs) during ultrasound (US) examination. However, the adoption of these algorithms in clinical settings is still hindered by the lack of large annotated datasets. To overcome this barrier, we introduce FetalBrainAwareNet, an innovative framework designed to synthesize anatomically accurate images of FHSPs. FetalBrainAwareNet introduces a cutting-edge approach that utilizes class activation maps as a prior in its conditional adversarial training process. This approach fosters the presence of the specific anatomical landmarks in the synthesized images. Additionally, we investigate specialized regularization terms within the adversarial training loss function to control the morphology of the fetal skull and foster the differentiation between the standard planes, ensuring that the synthetic images faithfully represent real US scans in both structure and overall appearance. The versatility of our FetalBrainAwareNet framework is highlighted by its ability to generate high-quality images of three predominant FHSPs using a singular, integrated framework. Quantitative (Fréchet inception distance of 88.52) and qualitative (t-SNE) results suggest that our framework generates US images with greater variability compared to state-of-the-art methods. By using the synthetic images generated with our framework, we increase the accuracy of FHSP classifiers by 3.2% compared to training the same classifiers solely with real acquisitions. These achievements suggest that using our synthetic images to increase the training set could provide benefits to enhance the performance of DL algorithms for FHSPs classification that could be integrated in real clinical scenarios.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38083494

RESUMO

The identification of fetal-head standard planes (FHSPs) from ultrasound (US) images is of fundamental importance to visualize cerebral structures and diagnose neural anomalies during gestation in a standardized way. To support the activity of healthcare operators, deep-learning algorithms have been proposed to classify these planes. To date, the translation of such algorithms in clinical practice is hampered by several factors, including the lack of large annotated datasets to train robust and generalizable algorithms. This paper proposes an approach to generate synthetic FHSP images with conditional generative adversarial network (cGAN), using class activation maps (CAMs) obtained from FHSP classification algorithms as cGAN conditional prior. Using the largest publicly available FHSP dataset, we generated realistic images of the three common FHSPs: trans-cerebellum, trans-thalamic and trans-ventricular. The evaluation through t-SNE shows the potential of the proposed approach to attenuate the problem of limited availability of annotated FHSP images.


Assuntos
Algoritmos , Encéfalo , Feminino , Gravidez , Humanos , Encéfalo/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Cerebelo , Feto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...