Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443186

RESUMO

Ordinary ice has a proton-disordered phase which is kinetically metastable, unable to reach, spontaneously, the ferroelectric (FE) ground state at low temperature where a residual Pauling entropy persists. Upon light doping with KOH at low temperature, the transition to FE ice takes place, but its microscopic mechanism still needs clarification. We introduce a lattice model based on dipolar interactions plus a competing, frustrating term that enforces the ice rule (IR). In the absence of IR-breaking defects, standard Monte Carlo (MC) simulation leaves this ice model stuck in a state of disordered proton ring configurations with the correct Pauling entropy. A replica exchange accelerated MC sampling strategy succeeds, without open path moves, interfaces, or off-lattice configurations, in equilibrating this defect-free ice, reaching its low-temperature FE order through a well-defined first-order phase transition. When proton vacancies mimicking the KOH impurities are planted into the IR-conserving lattice, they enable standard MC simulation to work, revealing the kinetics of evolution of ice from proton disorder to partial FE order below the transition temperature. Replacing ordinary nucleation, each impurity opens up a proton ring generating a linear string, an actual FE hydrogen bond wire that expands with time. Reminiscent of those described for spin ice, these impurity-induced strings are proposed to exist in doped water ice too, where IRs are even stronger. The emerging mechanism yields a dependence of the long-time FE order fraction upon dopant concentration, and upon quenching temperature, that compares favorably with that known in real-life KOH doped ice.

2.
J Phys Condens Matter ; 25(13): 135404, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23470526

RESUMO

The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure P(c). A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B(1g) mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.

3.
J Chem Phys ; 135(8): 084504, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21895196

RESUMO

A study of differently polarized structures relevant to the H-bonded antiferroelectric (AFE) compound NH(4)H(2)PO(4) (ADP) is performed by first-principles calculations in the framework of the density functional theory. The calculated structures for the AFE and paraelectric (PE) phases are found in general good agreement with the available experimental data. We study the energetics and relative stability of different polarized clusters embedded in a PE matrix of ADP. We find that local ferroelectric and AFE clusters are stable and may coexist in the PE phase, which explains the coexistence of both type of microregions determined by electron spin probe measurements above the AFE-PE transition temperature. The dependency with the O-H···O bridge length of the energy barrier heights for proton transfer is studied for coordinated proton displacements along the bridges within clusters of different sizes. This dependency may have implications for the geometric isotopic effects on T(c). We analyze Mulliken orbital and bond populations which confirm the existence of a charge flow within the NH(4)(+) ion, an essential fact for the stabilization of the AFE phase over other possible polarized structures. This charge transfer is correlated with the optimization of the N-H···O bridges and with distortions of the NH(4)(+) group.

4.
Phys Rev Lett ; 98(26): 267601, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17678127

RESUMO

The low-temperature antiferroelectric (AFE) phase of NH4H2PO4 corresponds to H ordering in O-H-O bridges leading to H2PO4 group polarizations perpendicular to the tetragonal c axis and alternating in chains. We determine the microscopic origin of such order by means of first-principles calculations in the framework of the density functional theory. The formation of N-Hcdots, three dots, centeredO bridges with correlated charge transfers and NH4+ group distortions turn out to be essential in stabilizing the AFE configuration against a c-polarized ferroelectric (FE) phase, as well as other FE states polarized perpendicular to the c axis. These FE states lie only a few meV above the AFE phase, which explains the observation of FE-AFE phase coexistence near the AFE transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...