Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 71(3): 339-347, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33074780

RESUMO

This paper presents the results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances of the boiler were noted. The obtained SO2 and NOX emissions were comparable with coal combustion, but dust emissions increased. During the co-combustion of the coal mixture with 10% of alternative fuel, acceptable standards for co-incineration of waste were exceeded for NOx, dust, CO, HCl, HF, heavy metals, dioxins, and furans. The by-products of waste co-combustion with coal were non-hazardous waste. The obtained results constitute a very important contribution to the process of boiler retrofitting toward a waste co-incineration unit, and to meeting the legislative and environmental requirements.Implications: Due to some challenges related to waste storage and transportation, combustion in incineration plants and Waste-to-Energy plants is not possible. The adaptation (formal and technical) of medium scale boilers as co-incineration plants reveals high potential. Nevertheless, the lack of experience and investigations of waste co-combustion in real industrial scale grate boilers is observed. Thus, the implication of this article results consists of the investigations using industrial scale mechanical grate boiler (different from incineration type). Moreover, the investigations were carried out in a low-capacity boiler (~50% of nominal capacity). This novel experience is very important because reduced heat dissipation into the grid caused by high ambient temperatures occurs very frequently. These tests are valuable from the point of view of retrofitting the unit to obtain technological and emission parameters that would allow obtaining the status of a waste co-incinerating unit. The results of these investigations are addressed to power plant management board and engineering staff.


Assuntos
Carvão Mineral , Metais Pesados , Humanos , Incineração , Centrais Elétricas
2.
Appl Biochem Biotechnol ; 179(7): 1248-61, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052208

RESUMO

CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Cinética , Luz , Fotobiorreatores , Temperatura
3.
Environ Technol ; 33(16-18): 2133-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23240208

RESUMO

Photo-selective catalytic reduction (photo-SCR) of nitric oxide (NO) was studied in the presence of water. The incipient wetness impregnation was applied to prepare 1 wt% PdO/TiO2 photocatalyst. Steady-state photoreaction was carried out in a continuous-flow photoreactor with 0.55-1.6 v% water at 30-120 degrees C under UV-light intensity of approximately 200mW/cm(2). The C3H8/NO molar ratio in the feed ranged from 0.8 - 16.8 at a volume hourly space velocity (VHSV) from 330-1090 h(-1). The result indicates that the increase of temperature has played an important role in inhibiting NO transformation to NO2 under the humid condition. Another important factor for maximizing denitrification (reduction of nitrogen oxides, DeNOx) efficiency was C3H8/NO ratio. An increase of temperature at a suitable C3H8/NO ratio can minimize NO2 formation, which can lead to high NO removal efficiency of more than 90% at a temperature of 70-100 degrees C. In addition, the mechanism of palladium transformation during photoreaction is proposed, to explain the influence of Pd on the improvement of NO removal.


Assuntos
Poluição do Ar/prevenção & controle , Óxido Nítrico/química , Paládio/química , Processos Fotoquímicos , Titânio/química , Catálise , Dióxido de Nitrogênio/análise , Oxirredução , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...