Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 428: 128205, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999562

RESUMO

Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing metal availability in a contaminated soil. The SBR removed up to 99% of Cu and 91% of Cd in water, and exhibited a significantly faster and higher sorption capacity (qmax (g kg-1) = 1111.1 for Cu and 33.3 for Cd) than BFR (qmax (g kg-1) = 33.3 for Cu and 10.0 for Cd), even at acidic pH. Soil metal availability was significantly reduced by SBR (up to 57% for Cu and 86% for Cd) and BFR (up to 36% for Cu and 68% for Cd) compared to the unamended soil. The higher removal efficacy of SBR over BFR could be attributed to its higher alkalinity (pH = 12.5), carbonate content (82%), and specific surface area, as well as the activity of hydroxyl -OH and Si-O groups. The nano-scale SBR and BFR, the former particularly, are novel, of low cost, and environmental friendly amendments that can be used for the remediation of metal-contaminated water and soil.


Assuntos
Beta vulgaris , Metais Pesados , Nanoestruturas , Poluentes do Solo , Cádmio/análise , Argila , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Resíduos Sólidos , Açúcares , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...