Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 20, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178178

RESUMO

Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.


Assuntos
Nanopartículas Metálicas , Rosmarinus , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Curr Drug Discov Technol ; 20(2): e011222211472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36464868

RESUMO

BACKGROUND: In this study, zinc oxide nanoparticles (ZnO-NPs) were biologically synthesized from Abelmoschus esculentus L. (Okra) mucilage fraction (OM). METHODS: Analytical techniques were employed to study the formation and properties of OM-ZnO NPs, including their morphology, shape, size distribution, and surface charges. Additionally, OM-ZnO NPs were assessed for their antimicrobial, antioxidant, and cytotoxic properties. RESULTS: UV-visible spectroscopy confirmed the formation of OM-ZnO NPs, evident by the appearance of an SPR peak at 368.8 nm. The FTIR spectroscopy demonstrated that OM functional groups contribute to the formation and stability of the NPs. Micrographs from TEM and SEM showed that OM-ZnO NPs ranged from 15-40 nm in diameter, whereas hydrodynamic diameter and surface charge values obtained from Zeta and DLS were 72.8 nm and 14.6 mv, respectively. XRD analysis indicated the OM-ZnO NPs were crystalline with a wurtzite structure and a crystallite size of 27.3 nm, while EDX revealed a zinc: oxygen ratio of 67.5:34. Further, the OM-ZnO NPs demonstrated significant antimicrobial activity in response to different types of bacteria. In the antioxidant assay, the OM-ZnO NPs scavenged DPPH with 68.6% of the efficiency of ascorbic acid (100%). CONCLUSION: The present study demonstrated the cytotoxic efficacy of MO-ZnO NPs against MCF7 cells with an IC50 of 43.99 µg/ml. Overall, the green synthesis of ZnO NPs by OM was successful for many biological applications, such as antimicrobial, antioxidant, and anticancer. Moreover, OM-ZnO NPs can be applied as a biologically-derived nanotherapeutic agent.


Assuntos
Abelmoschus , Anti-Infecciosos , Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Antineoplásicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Rep Biochem Mol Biol ; 10(2): 233-242, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34604413

RESUMO

BACKGROUND: Hepatitis C virus (HCV) is one of the major causes of chronic liver disease, as it holds a significant role in developing liver cirrhosis and hepatocellular carcinoma. Combination therapy with Pegaferon and Ribavirin leads to viral clearance of only 50% of patients. During the host antiviral response, protein kinase R (PKR) interacts with eukaryotic translation initiation factor 2 alpha (eIF2α), that leads to the inhibition of viral protein synthesis. The viral NS5A protein appears to interfere with this antiviral action, evading the host immune response. However, mutations in the NS5A gene have been observed to render HCV more susceptible to treatment. The aim of this study was to determine the mutations present in the IFN Sensitivity Determining Region (ISDR) and NS5A-PKRbinding domain regions in chronic HCV infected patients before and after therapy. METHODS: Viral RNA was isolated from the plasma of 52 chronic HCV infected patients before and after treatment. RT-Nested PCR reaction was used to reverse transcription and amplification of target fragment using the specific primers. RESULTS: Sequence analysis revealed no relationship between NS5A mutations and response to treatment. No significant difference was found between the mutations before and 3 months after treatment among responders and non-responders. CONCLUSION: This study showed that the number of mutations in NS5A did not significantly differ between the patients who responded to treatment and the patients that did not. Therefore, sequencing of these regions does not appear to be a suitable tool for predicting treatment outcomes.

4.
Bioresour Bioprocess ; 8(1): 56, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38650241

RESUMO

For the first time, an aqueous extract of Melilotus officinalis was used to synthesize bimetallic silver selenide chalcogenide nanostructures (Ag2Se-NCs). The formation of NCs was confirmed and characterized by UV-visible and FTIR spectroscopy, SEM and TEM imaging, XRD and EDX crystallography, zeta potential (ZP) and size distribution (DLS). The bioactivities of biosynthesized Ag2Se-NCs, such as antibacterial, antibiofilm, antioxidant and cytotoxicity potentials, were then examined. Bio-based Ag2Se-NCs were successfully synthesized with mostly spherical shape in the size range of 20-40 nm. Additionally, the MIC and MBC values of Ag2Se-NCs against ß-lactam-resistant Pseudomonas aeruginosa (ATCC 27853) were 3.12 and 50 µg/ml, respectively. The DPPH scavenging potential of Ag2Se-NCs in terms of IC50 was estimated to be 58.52. Green-synthesized Ag2Se-NCs have been shown to have promising benefits and could be used for biomedical applications. Although the findings indicate promising bioactivity of Ag2Se-NCs synthesized by M. officinalis extract (MO), more studies are required to clarify the comprehensive mechanistic biological activities.

5.
Drug Res (Stuttg) ; 70(10): 478-483, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32791535

RESUMO

BACKGROUND: Triple negative breast cancer is the most invasive breast cancer subtype and possesses poor prognosis and survival. Rho GTPase famil, especially Rac1 participates in a number of signaling events in cells with crucial roles in malignancy, migration and invasion of tumor cells. Silibinin, a flavonoid antioxidant from milk thistle has attracted attention in the recent decades for chemoprevention and chemotherapy of tumor cells. In this study, the effect of silibinin on the migration capacity of MDA-MB-231 cells, a highly metastatic human breast cancer cell line was investigated by evaluation of Rac1 expression. METHOD: MTT wound healing and transwell assays were performed to evaluate the effects of silibinin on proliferation and migration of MDA-MB-231 cells. In addition, the influence of the silibinin on the expression of Rac1mRNAs was assessed by RT-PCR. RESULTS: Results indicated significant dose-dependent inhibitory effect of silibinin on proliferation and migration of MDA-MB-231 cells. It significantly inhibited the expression of Rac1 mRNA. CONCLUSION: In conclusion, the results demonstrate that the silibinin can be used as an experimental therapeutic for the management of TNBC metastatic cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Silibina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Silibina/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas rac1 de Ligação ao GTP/genética
6.
Comp Immunol Microbiol Infect Dis ; 69: 101428, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006798

RESUMO

Gastrointestinal (GI) disorders including a wide range of infectious, inflammatory, autoimmune, etc. disorders. Inflammatory bowel and celiac disease are non-fatal but overwhelming GI associated disorders. IBD and celiac's complications, besides the great suffering, disturb the normal life of the patients and make them involved in mental and physical problems. The emerging role of genetic content is deniable for GI inflammatory disorders incidence, and long non-coding RNAs (lncRNAs) function is the recent topic for its association. Analyzing of absolute lncRNAs interference in GI inflammatory appearance remains in infancy, and more studies are requested. Here, we concisely performed a systematic review in the last knowledge up to 2020 to identify all of the significant lncRNAs associated with the initiation and progression of GI inflammatory diseases. Accordingly, this assay attempted to refer to the expression of lncRNAs changing from the normal state, discovery of genetic mechanisms, and main effectors that would trigger associated IBD and celiac expression and immune responses would be effective for therapeutic approaches. It could be useful for prognostic and diagnostic purposes of GI associated inflammatory disorders.


Assuntos
Suscetibilidade a Doenças , Gastroenteropatias/etiologia , Inflamação/etiologia , RNA Longo não Codificante , Animais , Biomarcadores , Gastroenteropatias/epidemiologia , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Predisposição Genética para Doença , Humanos , Inflamação/epidemiologia , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Prevalência
7.
Microrna ; 9(3): 198-215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686643

RESUMO

MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non-coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.


Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/genética , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Prognóstico
8.
Stem Cell Investig ; 6: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853454

RESUMO

Cancer stem cells (CSCs) are currently known as the main cause of tumor recurrence. After chemotherapy is completed, CSCs proliferate and then differentiate to generate new tumor tissues. Similar to normal stem cells, this non-uniformly distributed cell population in the tumor tissue has self-renewal capacity and is responsible for survival of the tumor and difference in its genetic and metabolic characteristics. Followed by gene instability in CSCs, new phenotypic markers are aberrantly expressed in CSCs subpopulation. Hence, some of the surface markers and metabolic pathways that are upregulated in CSCs may be applied as specific targets for development of diagnostic and therapeutic approaches. In this review article, the distinctive properties of CSCs including signal pathways implicated in self-renewal and surface markers were discussed. Moreover, targeting CSCs based on their specific properties using nanodrugs was reviewed.

9.
IET Nanobiotechnol ; 12(8): 1114-1117, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30964023

RESUMO

Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000-500 µg/ml occurred against Klebsiella pneumonia and at 1000-250 µg/ml of AgNPs was observed against E. coli. The UV-vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face-centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram-positive bacteria.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Thymus (Planta)/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Química Verde , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...