Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10580, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719937

RESUMO

Extracting information-bearing signal from a noisy environment has been a practical challenge in both classical and quantum computing formalism, especially in critical signal processing applications. To filter out the effect of noise, we propose a quantum smoothing filter built upon quantum formalism-based circuits applied for electrocardiogram signal denoising. The proposed quantum filter is a conceptually novel framework with an advantage in computational complexity as compared to the existing classical filters, such as discrete wavelet transform and empirical mode decomposition, whereas it achieves similar performance metrics for the accuracy of the filter. Further, we exploit the penta-diagonal Toeplitz structure of the smoothing filter, which gives approximately 48 % gate cost reduction for 10 qubit circuit compared to the standard Hamiltonian simulation without structure. The run-time complexity using the quantum matrix inversion technique for the structured matrix is given by O ~ κ 2 poly ( log N ) ε P for condition number κ of the N × N filter matrix within precision ε P . Embedding fixed sparsity of the banded matrix, the quantum filter shows potentially better run-time complexity than classical filtering techniques. For the quantifiable research results of our work, we have shown several performance metrics, such as mean-square error and peak signal-to-noise ratio analysis, with a bound of error due to observation noise, simulation error and quantum measurement uncertainty.

2.
Sci Rep ; 14(1): 10831, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734700

RESUMO

This study introduces a conceptually novel polynomial encoding algorithm for simulating potential energy operators encoded in diagonal unitary forms in a quantum computing machine. The current trend in quantum computational chemistry is effective experimentation to achieve high-precision quantum computational advantage. However, high computational gate complexity and fidelity loss are some of the impediments to the realization of this advantage in a real quantum hardware. In this study, we address the challenges of building a diagonal Hamiltonian operator having exponential functional form, and its implementation in the context of the time evolution problem (Hamiltonian simulation and encoding). Potential energy operators when represented in the first quantization form is an example of such types of operators. Through systematic decomposition and construction, we demonstrate the efficacy of the proposed polynomial encoding method in reducing gate complexity from O ( 2 n ) to O ∑ i = 1 r n C r (for some r ≪ n ). This offers a solution with lower complexity in comparison to the conventional Hadamard basis encoding approach. The effectiveness of the proposed algorithm was validated with its implementation in the IBM quantum simulator and IBM quantum hardware. This study demonstrates the proposed approach by taking the example of the potential energy operator of the sodium iodide molecule (NaI) in the first quantization form. The numerical results demonstrate the potential applicability of the proposed method in quantum chemistry problems, while the analytical bound for error analysis and computational gate complexity discussed, throw light on issues regarding its implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...