Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(38): eadh1328, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738340

RESUMO

Neuroprosthetics offer great hope for motor-impaired patients. One obstacle is that fine motor control requires near-instantaneous, rich somatosensory feedback. Such distributed feedback may be recreated in a brain-machine interface using distributed artificial stimulation across the cortical surface. Here, we hypothesized that neuronal stimulation must be contiguous in its spatiotemporal dynamics to be efficiently integrated by sensorimotor circuits. Using a closed-loop brain-machine interface, we trained head-fixed mice to control a virtual cursor by modulating the activity of motor cortex neurons. We provided artificial feedback in real time with distributed optogenetic stimulation patterns in the primary somatosensory cortex. Mice developed a specific motor strategy and succeeded to learn the task only when the optogenetic feedback pattern was spatially and temporally contiguous while it moved across the topography of the somatosensory cortex. These results reveal spatiotemporal properties of the sensorimotor cortical integration that set constraints on the design of neuroprosthetics.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Humanos , Animais , Camundongos , Retroalimentação , Aprendizagem , Neurônios Motores
2.
J Neural Eng ; 19(6)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579369

RESUMO

Objective.Distributed microstimulations at the cortical surface can efficiently deliver feedback to a subject during the manipulation of a prosthesis through a brain-machine interface (BMI). Such feedback can convey vast amounts of information to the prosthesis user and may be key to obtain an accurate control and embodiment of the prosthesis. However, so far little is known of the physiological constraints on the decoding of such patterns. Here, we aimed to test a rotary optogenetic feedback that was designed to encode efficiently the 360° movements of the robotic actuators used in prosthetics. We sought to assess its use by mice that controlled a prosthesis joint through a closed-loop BMI.Approach.We tested the ability of mice to optimize the trajectory of a virtual prosthesis joint in order to solve a rewarded reaching task. They could control the speed of the joint by modulating the activity of individual neurons in the primary motor cortex. During the task, the patterned optogenetic stimulation projected on the primary somatosensory cortex continuously delivered information to the mouse about the position of the joint.Main results.We showed that mice are able to exploit the continuous, rotating cortical feedback in the active behaving context of the task. Mice achieved better control than in the absence of feedback by detecting reward opportunities more often, and also by moving the joint faster towards the reward angular zone, and by maintaining it longer in the reward zone. Mice controlling acceleration rather than speed of the joint failed to improve motor control.Significance.These findings suggest that in the context of a closed-loop BMI, distributed cortical feedback with optimized shapes and topology can be exploited to control movement. Our study has direct applications on the closed-loop control of rotary joints that are frequently encountered in robotic prostheses.


Assuntos
Interfaces Cérebro-Computador , Camundongos , Animais , Retroalimentação , Optogenética/métodos , Aprendizagem , Movimento
3.
Cell Rep ; 39(1): 110617, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385729

RESUMO

The topographic organization is a prominent feature of sensory cortices, but its functional role remains controversial. Particularly, it is not well determined how integration of activity within a cortical area depends on its topography during sensory-guided behavior. Here, we train mice expressing channelrhodopsin in excitatory neurons to track a photostimulation bar that rotated smoothly over the topographic whisker representation of the primary somatosensory cortex. Mice learn to discriminate angular positions of the light bar to obtain a reward. They fail not only when the spatiotemporal continuity of the photostimulation is disrupted in this area but also when cortical areas displaying map discontinuities, such as the trunk and legs, or areas without topographic map, such as the posterior parietal cortex, are photostimulated. In contrast, when cortical topographic continuity enables to predict future sensory activation, mice demonstrate anticipation of reward availability. These findings could be helpful for optimizing feedback while designing cortical neuroprostheses.


Assuntos
Aprendizagem , Córtex Somatossensorial , Animais , Channelrhodopsins , Aprendizagem/fisiologia , Camundongos , Neurônios , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
4.
J Neurophysiol ; 122(4): 1606-1622, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411931

RESUMO

Rats use their whiskers to extract sensory information from their environment. While exploring, they analyze peripheral stimuli distributed over several whiskers. Previous studies have reported cross-whisker integration of information at several levels of the neuronal pathways from whisker follicles to the somatosensory cortex. In the present study, we investigated the possible coupling between whiskers at a preneuronal level, transmitted by the skin and muscles between follicles. First, we quantified the movement induced on one whisker by deflecting another whisker. Our results show significant mechanical coupling, predominantly when a given whisker's caudal neighbor in the same row is deflected. The magnitude of the effect was correlated with the diameter of the deflected whisker. In addition to changes in whisker angle, we observed curvature changes when the whisker shaft was constrained distally from the base. Second, we found that trigeminal ganglion neurons innervating a given whisker follicle fire action potentials in response to high-magnitude deflections of an adjacent whisker. This functional coupling also shows a bias toward the caudal neighbor located in the same row. Finally, we designed a two-whisker biomechanical model to investigate transmission of forces across follicles. Analysis of the whisker-follicle contact forces suggests that activation of mechanoreceptors in the ring sinus region could account for our electrophysiological results. The model can fully explain the observed caudal bias by the gradient in whisker diameter, with possible contribution of the intrinsic muscles connecting follicles. Overall, our study demonstrates the functional relevance of mechanical coupling on early information processing in the whisker system.NEW & NOTEWORTHY Rodents explore their environment actively by touching objects with their whiskers. A major challenge is to understand how sensory inputs from different whiskers are merged together to form a coherent tactile percept. We demonstrate that external sensory events on one whisker can influence the position of another whisker and, importantly, that they can trigger the activity of mechanoreceptors at its base. This cross-whisker interaction occurs pre-neuronally, through mechanical transmission of forces in the skin.


Assuntos
Mecanorreceptores/fisiologia , Movimento , Percepção do Tato , Vibrissas/fisiologia , Potenciais de Ação , Animais , Masculino , Ratos , Ratos Wistar , Gânglio Trigeminal/citologia , Gânglio Trigeminal/fisiologia , Vibrissas/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...