Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(10): 45, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207297

RESUMO

Purpose: Retinitis pigmentosa (RP), the most common inherited retinal disease, is characterized by progressive photoreceptor degeneration. It remains unknown to what extent surviving photoreceptors transduce light and support vision in RP. To address this, we correlated structure and functional measures using adaptive optics scanning laser ophthalmoscopy (AOSLO), adaptive optics microperimetry, and adaptive optics optical coherence tomography (AO-OCT)-based optoretinograms (ORGs). Methods: Four patients with RP were imaged with AOSLO across the visual field covering the transition zone (TZ) of normal to diseased retina. Cone density was estimated in discrete regions spanning the TZ. Visual sensitivity was assessed by measuring increment thresholds for a 3-arcmin stimulus targeted via active eye tracking in AOSLO. ORGs were measured at the same locations using AO-OCT to assess the cones' functional response to a 528 ± 20-nm stimulus. Individual cone outer segment (COS) lengths were measured from AO-OCT in each subject. Results: Cone density was significantly reduced in patients with RP. Density reduction correlated with TZ location in 3 patients with RP, while a fourth had patches of reduced density throughout the retina. ORG amplitude was reduced in regions of normal and reduced cone density in all patients with RP. ORG response and COS length were positively correlated in controls but not in patients with RP. Despite deficits in cone density and ORG, visual sensitivity remained comparable to controls in three of four patients with RP. Conclusions: ORG-based measures of retinal dysfunction may precede deficits in cone structure and visual sensitivity. ORG is a sensitive measure of RP disease status and has significant potential to provide insight into disease progression and treatment efficacy.


Assuntos
Oftalmoscopia , Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar , Tomografia de Coerência Óptica , Acuidade Visual , Testes de Campo Visual , Campos Visuais , Humanos , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/diagnóstico , Tomografia de Coerência Óptica/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Oftalmoscopia/métodos , Masculino , Feminino , Testes de Campo Visual/métodos , Adulto , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Pessoa de Meia-Idade , Imagem Multimodal , Contagem de Células
2.
Biomed Opt Express ; 14(2): 815-833, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36874491

RESUMO

Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.

3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795055

RESUMO

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength-sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength-sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.


Assuntos
Oftalmoscopia/métodos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/metabolismo , Eletrorretinografia , Proteínas do Olho/metabolismo , Humanos
4.
Invest Ophthalmol Vis Sci ; 62(2): 8, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544131

RESUMO

Purpose: Psychophysical and genetic testing provide substantial information about color vision phenotype and genotype. However, neither reveals how color vision phenotypes and genotypes manifest themselves in individual cones, where color vision and its anomalies are thought to originate. Here, we use adaptive-optics phase-sensitive optical coherence tomography (AO-PSOCT) to investigate these relationships. Methods: We used AO-PSOCT to measure cone function-optical response to light stimulation-in each of 16 human subjects with different phenotypes and genotypes of color vision (five color-normal, three deuteranopic, two protanopic, and six deuteranomalous trichromatic subjects). We classified three spectral types of cones (S, M, and L), and we measured cone structure-namely cone density, cone mosaic arrangement, and spatial arrangement of cone types. Results: For the different phenotypes, our cone function results show that (1) color normals possess S, M, and L cones; (2) deuteranopes are missing M cones but are normal otherwise; (3) protanopes are missing L cones but are normal otherwise; and (4) deuteranomalous trichromats are missing M cones but contain evidence of at least two subtypes of L cones. Cone function was consistent with the subjects' genotype in which only the first two M and L genes in the gene array are expressed and was correlated with the estimated spectral separation between photopigments, including in the deuteranomalous trichromats. The L/M cone ratio was highly variable in the color normals. No association was found between cone density and the genotypes and phenotypes investigated, and the cone mosaic arrangement was altered in the dichromats. Conclusions: AO-PSOCT is a novel method for assessing color vision phenotype and genotype in single cone cells.


Assuntos
Defeitos da Visão Cromática/genética , Visão de Cores/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/metabolismo , Adulto , Percepção de Cores/fisiologia , Defeitos da Visão Cromática/metabolismo , Defeitos da Visão Cromática/patologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Células Fotorreceptoras Retinianas Cones/patologia , Tomografia de Coerência Óptica/métodos , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 116(16): 7951-7956, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944223

RESUMO

Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.


Assuntos
Visão de Cores/fisiologia , Estimulação Luminosa/métodos , Células Fotorreceptoras Retinianas Cones/classificação , Células Fotorreceptoras Retinianas Cones/fisiologia , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Retina/diagnóstico por imagem , Retina/fisiologia , Tomografia de Coerência Óptica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA