Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci Methods ; 387: 109798, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682731

RESUMO

BACKGROUND: Rodent reach-to-grasp function assessment is a translationally powerful model for evaluating neurological function impairments and recovery responses. Existing assessment platforms are experimenter-dependent, costly, or low-throughput with limited output measures. Further, a direct histologic comparison of neural activation has never been conducted between any novel, automated platform and the well-established single pellet skilled reach task (SRT). NEW METHOD: To address these technological and knowledge gaps, we designed an open-source, low-cost Automatized Reach-to-Grasp (AutoRG) pull platform that reduces experimenter interventions and variability. We assessed reach-to-grasp function in rats across seven progressively difficult stages using AutoRG. We mapped AutoRG and SRT-activated motor circuitries in the rat brain using volumetric imaging of the immediate early gene-encoded Arc (activity-regulated cytoskeleton-associated) protein. RESULTS: Rats demonstrated robust forelimb reaching and pulling behavior after training in AutoRG. Reliable force versus time responses were recorded for individual reach events in real time, which were used to derive several secondary functional measures of performance. Moreover, we provide the first demonstration that for a training period of 30 min, AutoRG and SRT both engage similar neural responses in the caudal forelimb area (CFA), rostral forelimb area (RFA), and sensorimotor area (S1). CONCLUSION: AutoRG is the first low-cost, open-source pull system designed for the scale-up of volitional forelimb motor function testing and characterization of rodent reaching behavior. The similarities in neuronal activation patterns observed in the rat motor cortex after SRT and AutoRG assessments validate the AutoRG as a rigorously characterized, scalable alternative to the conventional SRT and expensive commercial systems.


Assuntos
Membro Anterior , Roedores , Ratos , Animais , Membro Anterior/fisiologia , Extremidade Superior , Força da Mão , Cognição
2.
Psychiatry Clin Neurosci ; 66(2): 87-96, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22353322

RESUMO

AIM: While volumetric and metabolic imaging on post-traumatic stress disorder (PTSD) patients has been intensively performed, few studies using electroencephalograms (EEG) have been done as yet. The aim of the present study was to investigate abnormalities in functional connectivity of cortical networks in PTSD. METHODS: Non-linear interdependence (NI), a measure of bidirectional, non-linear information transmission between two time series, was used. Resting EEG were recorded for 18 PTSD patients and 18 sex-matched healthy subjects on 16 channels with their eyes closed. RESULTS: The NI patterns in PTSD patients were hemisphere asymmetric: an increase in NI in the fronto-parieto-temporal regions of the left hemisphere (F7, F3, T3, C3, T5 and P3) and a decrease in the fronto-parieto-occipital regions of the right hemisphere (F4, C4, P4 and O2). The non-linearity of NI in EEG, estimated from the surrogate data method, exhibited an increase in the PTSD patients as compared with that of healthy subjects, particularly in the left hemispheric cortex. CONCLUSION: Abnormal functional connectivity in PTSD can be assessed using NI, a measure of multi-channel EEG.


Assuntos
Encéfalo/fisiopatologia , Lateralidade Funcional/fisiologia , Rede Nervosa/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
IEEE Trans Biomed Eng ; 58(4): 1084-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19884077

RESUMO

The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.


Assuntos
Algoritmos , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Vigília/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...