Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19489, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593860

RESUMO

In the close vicinity of a hot solid, at distances smaller than the thermal wavelength, a strong electromagnetic energy density exists because of the presence of evanescent field. Here we introduce a many-body conversion principle to harvest this energy using graphene-based pyroelectric conversion devices made with an active layer encapsulated between two graphene field-effect transistors which are deposited on the source and on the cold sink. By tuning the bias voltage applied to the gates of these transistors, the thermal state and the spontaneous polarization of the active layer can be controlled at kHz frequencies. We demonstrate that the power density generated by these conversion systems can reach [Formula: see text] using pyroelectric Ericsson cycles, a value which surpasses the current production capacity of near-field thermophotovoltaic conversion devices by more than three orders of magnitude with low grade heat sources ([Formula: see text]) and small temperature differences ([Formula: see text]).

2.
Opt Express ; 29(16): 24816-24833, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614829

RESUMO

When two objects at different temperatures are separated by a vacuum gap they can exchange heat by radiation only. At large separation distances (far-field regime), the amount of transferred heat flux is limited by Stefan-Boltzmann's law (blackbody limit). In contrast, at subwavelength distances (near-field regime), this limit can be exceeded by orders of magnitude thanks to the contributions of evanescent waves. This article reviews the recent progress on the passive and active control of near-field radiative heat exchange in two- and many-body systems.

3.
Phys Rev E ; 103(6): L061303, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271684

RESUMO

The unconstrained ensemble describes completely open systems whose control parameters are the chemical potential, pressure, and temperature. For macroscopic systems with short-range interactions, thermodynamics prevents the simultaneous use of these intensive variables as control parameters, because they are not independent and cannot account for the system size. When the range of the interactions is comparable with the size of the system, however, these variables are not truly intensive and may become independent, so equilibrium states defined by the values of these parameters may exist. Here, we derive a Monte Carlo algorithm for the unconstrained ensemble and show that simulations can be performed using the chemical potential, pressure, and temperature as control parameters. We illustrate the algorithm by applying it to physical systems where either the system has long-range interactions or is confined by external conditions. The method opens up an avenue for the simulation of completely open systems exchanging heat, work, and matter with the environment.

4.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260922

RESUMO

Single-molecular polymers can be used to analyze to what extent thermodynamics applies when the size of the system is drastically reduced. We have recently verified using molecular-dynamics simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs stretching energies, which are not related to a Legendre transform, as they are for sufficiently long polymers. This disparity has also been observed experimentally. Using molecular dynamics simulations of polyethylene-oxide, we document for the first time that the Helmholtz and Gibbs stretching energies can be related by a Legendre-Fenchel transform. This opens up a possibility to apply this transform to other systems which are small in Hill's sense.

5.
Sci Rep ; 10(1): 8938, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488032

RESUMO

Radiative heat transfer between two bodies saturates at very short separation distances due to the nonlocal optical response of the materials. In this work, we show that the presence of radiative interactions with a third body or external bath can also induce a saturation of the heat transfer, even at separation distances for which the optical response of the materials is purely local. We demonstrate that this saturation mechanism is a direct consequence of a thermalization process resulting from many-body interactions in the system. This effect could have an important impact in the field of nanoscale thermal management of complex systems and in the interpretation of measured signals in thermal metrology at the nanoscale.

6.
Phys Rev Lett ; 121(2): 023903, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085727

RESUMO

We demonstrate the existence of a shuttling effect for the radiative heat flux exchanged between two bodies separated by a vacuum gap when the chemical potential of photons or the temperature difference is modulated. We show that this modulation typically gives rise to a supplementary flux which superimposes to the flux produced by the mean gradient, enhancing the heat exchange. When the system displays a negative differential thermal resistance, however, the radiative shuttling contributes to insulate the two bodies from each other. These results pave the way for a novel strategy for an active management of radiative heat exchanges in nonequilibrium systems.

7.
Entropy (Basel) ; 20(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33266631

RESUMO

In nonadditive systems, like small systems or like long-range interacting systems even in the thermodynamic limit, ensemble inequivalence can be related to the occurrence of negative response functions, this in turn being connected with anomalous concavity properties of the thermodynamic potentials associated with the various ensembles. We show how the type and number of negative response functions depend on which of the quantities E, V and N (energy, volume and number of particles) are constrained in the ensemble. In particular, we consider the unconstrained ensemble in which E, V and N fluctuate, which is physically meaningful only for nonadditive systems. In fact, its partition function is associated with the replica energy, a thermodynamic function that identically vanishes when additivity holds, but that contains relevant information in nonadditive systems.

8.
Phys Rev Lett ; 118(17): 173902, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498684

RESUMO

A giant thermal magnetoresistance is predicted for the electromagnetic transport of heat in magneto-optical plasmonic structures. In chains of InSb-Ag nanoparticles at room temperature, we find that the resistance can be increased by almost a factor of 2 with magnetic fields of 2 T. We show that this important change results from the strong spectral dependence of localized surface waves on the magnitude of the magnetic field.

9.
Phys Rev E ; 95(1-1): 012140, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208311

RESUMO

Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.

10.
Phys Rev Lett ; 114(23): 230601, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26196786

RESUMO

The usual formulation of thermodynamics is based on the additivity of macroscopic systems. However, there are numerous examples of macroscopic systems that are not additive, due to the long-range character of the interaction among the constituents. We present here an approach in which nonadditive systems can be described within a purely thermodynamics formalism. The basic concept is to consider a large ensemble of replicas of the system where the standard formulation of thermodynamics can be naturally applied and the properties of a single system can be consequently inferred. After presenting the approach, we show its implementation in systems where the interaction decays as 1/r(α) in the interparticle distance r, with α smaller than the embedding dimension d, and in the Thirring model for gravitational systems.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24229143

RESUMO

The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...