Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 119: 286-300, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608739

RESUMO

Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Progressão da Doença , Hipocampo , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Microglia/metabolismo , Microglia/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Masculino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Interneurônios/metabolismo , Interneurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...