Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2216953120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036972

RESUMO

In cancer cells, endogenous or therapy-induced DNA damage leads to the abnormal presence of DNA in the cytoplasm, which triggers the activation of cGAS (cyclic GMP-AMP synthase) and STING (stimulator of interferon genes). STAT2 suppresses the cGAMP-induced expression of IRF3-dependent genes by binding to STING, blocking its intracellular trafficking, which is essential for the full response to STING activation. STAT2 reshapes STING signaling by inhibiting the induction of IRF3-dependent, but not NF-κB-dependent genes. This noncanonical activity of STAT2 is regulated independently of its tyrosine phosphorylation but does depend on the phosphorylation of threonine 404, which promotes the formation of a STAT2:STING complex that keeps STING bound to the endoplasmic reticulum (ER) and increases resistance to DNA damage. We conclude that STAT2 is a key negative intracellular regulator of STING, a function that is quite distinct from its function as a transcription factor.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT2 , DNA/metabolismo , Dano ao DNA , Nucleotidiltransferases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator de Transcrição STAT2/metabolismo , Proteínas de Membrana/metabolismo
2.
Inflammopharmacology ; 30(2): 537-548, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35212850

RESUMO

Rheumatoid arthritis is primarily associated with inflammation and increased level of proinflammatory cytokines which are released by immune cells, macrophages or activation of arachidonic acid metabolism. The expression of these cytokines, oxidative free radicals and the activation of COX-2 enzymes are crucial targets for chronic inflammation. On the basis of established anti-inflammatory efficacy of nerolidol, the primary study was further appraised to determine its approach against Freund's complete adjuvant (CFA) rheumatoid model. Arthritis was induced by inoculation of 0.1 mL CFA injection into the left hind footpad of rats. Anti-arthritic potential of nerolidol (at 200, 400 and 800 mg/kg doses) was assessed by measuring the paw volume, body weight, serum analysis, histopathological and radiographs of ankle joints. Expressions of cytokine's panels such as IL-10, IL-4, COX-2, NF-kB, TNF-α, IL-6, PGE-2 and IL-1ß were determined by real-time qPCR. Antioxidant enzyme analyses were conducted by measuring the SOD, POD and catalase activity from serum and equated with arthritic control group. Nerolidol prevented body weight loss, stabilized biochemical and haematological homeostasis and significantly reduced the paw volume. Furthermore, X-ray and histopathological assessment of ankle joints showed an improvement in the joint structure of rats treated with nerolidol. Besides that, overexpression of gene pointers like TNF-α, IL-1ß, IL-6, NF-kB, PGE-2 and COX-2 in CFA-treated control rats were also reversed with nerolidol. This anti-arthritic mechanism was further supported by the increased level of IL-10, IL-4 and serum antioxidant activity. The present findings demonstrate that nerolidol reduced adjuvant arthritis by downregulating the proinflammatory cytokines and upregulating the aforementioned anti-inflammatory cytokines and may be used as a therapeutic substance for the management of human rheumatoid arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ciclo-Oxigenase 2 , Interleucina-6 , NF-kappa B , Sesquiterpenos , Fator de Necrose Tumoral alfa , Animais , Antioxidantes/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ratos , Sesquiterpenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
3.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062600

RESUMO

An autonomous driving environment poses a very stringent requirement for the timely delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access (TDMA)-based medium access control (MAC) protocols are considered a promising solution because of their time-bound message delivery. However, in the event of mobility-caused packet collisions, they may experience an unpredicted and extended delay in delivering messages, which can cause catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions. One vehicle in the merging collisions retains the time slot, and the others release the slot. The common neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to avoid further access collisions. Simulation results show that the proposed protocol reduces packet loss more than the existing methods. Consequently, the average delay between the successfully delivered periodic messages is also reduced.

4.
Transl Res ; 241: 83-95, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34871809

RESUMO

Patients with cancers have been severely affected by the COVID-19 pandemic. This is highlighted by the adverse outcomes in cancer patients with COVID-19 as well as by the impact of the COVID-19 pandemic on cancer care. Patients with cancer constitute a heterogeneous population that exhibits distinct mechanisms of immune dysfunction, associated with distinct systemic features of hot (T-cell-inflamed/infiltrated) and cold (Non-T-cell-inflamed and/or infiltrated) tumors. The former show hyper immune activated cells and a highly inflammatory environment while, contrastingly, the latter show the profile of a senescent and/or quiescent immune system. Thus, the evolution of SARS-CoV-2 infection in different types of cancers can show distinct trajectories which could lead to a variety of clinical and pathophysiological outcomes. The altered immunological environment including cytokines that characterizes hot and cold tumors will lead to different mechanisms of immune dysfunction, which will result in downstream effects on the course of SARS-CoV-2 infection. This review will focus on defining the known contributions of soluble pro- and anti-inflammatory mediators on immune function including altered T-cells and B-cells responses and as well on how these factors modulate the expression of SARS-CoV-2 receptor ACE2, TMPRSS2 expression, and lymph node fibrosis in cancer patients. We will propose immune mechanisms that underlie the distinct courses of SARS-CoV-2 infection in cancer patients and impact on the success of immune based therapies that have significantly improved cancer outcomes. Better understanding of the immune mechanisms prevalent in cancer patients that are associated to the outcomes of SARS-CoV-2 infection will help to identify the high-risk cancer patients and develop immune-based approaches to prevent significant adverse outcomes by targeting these pathways.


Assuntos
COVID-19/complicações , Neoplasias/imunologia , COVID-19/imunologia , COVID-19/virologia , Humanos , Avaliação de Resultados em Cuidados de Saúde , SARS-CoV-2/isolamento & purificação
5.
Saudi Pharm J ; 30(12): 1791-1801, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601515

RESUMO

Noscapine hydrochloride (benzyl-isoquinoline antitussive alkaloid) is an opium derivative and generally used as a cough suppressant. Numerous studies on noscapine hydrochloride have reported that it has potent anti-inflammatory activity. However, the mechanisms by which it exerts an anti-inflammatory function is not well understood. Protein denaturation is the primary step that leads to the organ destruction and permanent arthritic disability. The above-mentioned facts provided the ground to plan this study using different in-vitro and in-vivo approaches. RT-qPCR and ELISA assays were used to assess the inflammatory markers related to protein denaturation in complete adjuvant persuaded rheumatism in Sprague - Dawley rats. The results were collected as paw volume and body weight changes, arthritic scoring and serum antioxidant enzymes assays. These findings demonstrated that all doses of noscapine hydrochloride (10, 20 and 40 mg/kg) studied in this study, significantly (p < 0.001) decreased the protein denaturation by preventing the increase in levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-kB (NF-kB), cyclooxygenase-2 (COX-2) and prostaglandin E2. Noscapine hydrochloride significantly reduced the paw volume (p < 0.001), arthritic scoring and reversed the body mass as compared to arthritic control diseased rats.

6.
Nat Immunol ; 22(10): 1294-1305, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556879

RESUMO

Development of effective human immunodeficiency virus 1 (HIV-1) vaccines requires synergy between innate and adaptive immune cells. Here we show that induction of the transcription factor CREB1 and its target genes by the recombinant canarypox vector ALVAC + Alum augments immunogenicity in non-human primates (NHPs) and predicts reduced HIV-1 acquisition in the RV144 trial. These target genes include those encoding cytokines/chemokines associated with heightened protection from simian immunodeficiency virus challenge in NHPs. Expression of CREB1 target genes probably results from direct cGAMP (STING agonist)-modulated p-CREB1 activity that drives the recruitment of CD4+ T cells and B cells to the site of antigen presentation. Importantly, unlike NHPs immunized with ALVAC + Alum, those immunized with ALVAC + MF59, the regimen in the HVTN702 trial that showed no protection from HIV infection, exhibited significantly reduced CREB1 target gene expression. Our integrated systems biology approach has validated CREB1 as a critical driver of vaccine efficacy and highlights that adjuvants that trigger CREB1 signaling may be critical for efficacious HIV-1 vaccines.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunogenicidade da Vacina/imunologia , Vacinas Virais/imunologia , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Expressão Gênica/imunologia , Vetores Genéticos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização/métodos , Primatas/imunologia , Primatas/virologia , Vacinação/métodos
7.
Sci Immunol ; 6(61)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266981

RESUMO

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Saccharomycetales/genética , Glicoproteína da Espícula de Coronavírus/genética , Administração por Inalação , Administração Intranasal , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Citocinas/imunologia , Humanos , Imunoglobulina G/imunologia , Pulmão/patologia , Macaca mulatta , Masculino , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
8.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896590

RESUMO

The innate immune response is crucial for defense against viral infections. Cells recognize virus infection through pattern recognition receptors and induce type I interferons as well as proinflammatory cytokines to orchestrate an innate immune response. Herpes simplex virus 1 (HSV-1) triggers both the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Toll-like receptor 3 (TLR3) pathways. It is well known that TLR3 uses the adaptor protein Toll/interleukin-1 receptor (IL-1R) domain-containing adaptor-inducing beta interferon (TRIF) for signaling, but we recently reported that STING signaling also requires TRIF. Because STING directly binds to TRIF, we identified the STING-interacting domain of TRIF and generated STING-noninteracting mutants of human and mouse TRIFs. The mutant TRIFs were unable to support STING signaling, although they were fully functional in the TLR3 pathway. These mutants were used to assess the relative contributions of the TLR3 and STING pathways to the attenuation of HSV-1 replication in mouse and human cell lines. For this purpose, the mouse L929 and NB41A3 cell lines and the human HT1080 and HeLa-M cell lines, in which both the TLR3 and the STING pathways are operational, were used. The TRIF gene was disrupted in these lines by CRISPR/Cas9, before reconstituting them with mutant and wild-type TRIF expression vectors. Infection of the reconstituted cells with HSV-1 revealed that both the cGAS-STING and the TLR3 signaling pathways are required for the attenuation of virus replication, but their relative contributions in attenuating HSV-1 replication were found to be different in mouse versus human cell lines. Thus, our study suggests that the relative contributions of the cGAS-STING and the TLR3 pathways in the attenuation of viral infection may be species specific.IMPORTANCE The magnitude of fatal infections caused by all different viruses in human and animal populations justifies a better understanding of the host innate immune response process that attenuates virus replication. In particular, the relative contributions of different signaling pathways which are responsible for the generation of the innate immune response are still largely unknown. In this study, we used STING-noninteracting TRIF mutants to decipher the relative contributions of the TLR3 and cGAS-STING signaling pathways to the attenuation of HSV-1 infection. We show that the relative contributions of the two pathways to the attenuation of viral infection are different in mouse versus human cell lines. Together, our results provide new insights into the relative contributions of two different signaling pathways in the attenuation of viral infection and may lead to the development of new antiviral strategies aimed at blocking viral infection at very early stages.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Replicação Viral , Animais , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Receptor 3 Toll-Like/genética
9.
Microb Pathog ; 137: 103748, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521802

RESUMO

Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana/fisiologia , Fímbrias Bacterianas/fisiologia , Salmonella/fisiologia , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/fisiologia , Genes Bacterianos , Humanos , Salmonella/genética , Infecções por Salmonella , Receptores Toll-Like
10.
J Virol ; 90(5): 2455-72, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676769

RESUMO

UNLABELLED: Gammaherpesviruses are important human and animal pathogens. Despite the fact that they display the classical architecture of herpesviruses, the function of most of their structural proteins is still poorly defined. This is especially true for tegument proteins. Interestingly, a potential role in immune evasion has recently been proposed for the tegument protein encoded by Kaposi's sarcoma-associated herpesvirus open reading frame 63 (ORF63). To gain insight about the roles of ORF63 in the life cycle of a gammaherpesvirus, we generated null mutations in the ORF63 gene of murid herpesvirus 4 (MuHV-4). We showed that disruption of ORF63 was associated with a severe MuHV-4 growth deficit both in vitro and in vivo. The latter deficit was mainly associated with a defect of replication in the lung but did not affect the establishment of latency in the spleen. From a functional point of view, inhibition of caspase-1 or the inflammasome did not restore the growth of the ORF63-deficient mutant, suggesting that the observed deficit was not associated with the immune evasion mechanism identified previously. Moreover, this growth deficit was also not associated with a defect in virion egress from the infected cells. In contrast, it appeared that MuHV-4 ORF63-deficient mutants failed to address most of their capsids to the nucleus during entry into the host cell, suggesting that ORF63 plays a role in capsid movement. In the future, ORF63 could therefore be considered a target to block gammaherpesvirus infection at a very early stage of the infection. IMPORTANCE: The important diseases caused by gammaherpesviruses in human and animal populations justify a better understanding of their life cycle. In particular, the role of most of their tegument proteins is still largely unknown. In this study, we used murid herpesvirus 4, a gammaherpesvirus infecting mice, to decipher the role of the protein encoded by the viral ORF63 gene. We showed that the absence of this protein is associated with a severe growth deficit both in vitro and in vivo that was mainly due to impaired migration of viral capsids toward the nucleus during entry. Together, our results provide new insights about the life cycle of gammaherpesviruses and could allow the development of new antiviral strategies aimed at blocking gammaherpesvirus infection at the very early stages.


Assuntos
Transporte Biológico , Capsídeo/metabolismo , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Cricetinae , Feminino , Deleção de Genes , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Histocitoquímica , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Rhadinovirus/genética , Rhadinovirus/crescimento & desenvolvimento , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...