Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(4): 1818-1826, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873626

RESUMO

A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide C30H22N2Pb2I6 (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI2, it forms AEPyPb2I6, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers. The structure determination was obtained using three-dimensional electron diffraction, and the material was extensively studied by using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-visible spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, Raman and infrared spectroscopies, and photoluminescence spectroscopy. The emissive properties of the material were correlated with its electronic structure by using state-of-the-art theoretical calculations. The complex, highly conjugated electronic structure of the cation interacts strongly with that of the Pb-I network, giving rise to the peculiar optoelectronic properties of AEPyPb2I6. The material, considering its relatively easy synthesis and stability, shows promise for light-emitting and photovoltaic devices. The use of highly conjugated quaternary ammonium cations may be useful for the development of new hybrid iodoplumbates and perovskites with optoelectronic properties tailored for specific applications.

2.
Cryst Growth Des ; 22(12): 7426-7433, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36510624

RESUMO

4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) bismuth iodide (C30H22N2)3Bi4I18 (AEPyBiI) was obtained as a black powder by a very simple route by mixing an acetone solution of BiI3 and an aqueous solution of C30H22N2I2. This novel perovskite is air and water stable and displays a remarkable thermal stability up to nearly 300 °C. The highly conjugated cation C30H22N2 2+ is hydrolytically stable, being nitrogen atoms quaternarized, and this accounts for the insensitivity of the perovskite toward water and atmospheric oxygen under ambient conditions. The cation in aqueous solution is highly fluorescent under UV irradiation (emitting yellow-orange light). AEPyBiI as well is intensely luminescent, its photoluminescence emission being more than 1 order of magnitude greater than that of high-quality InP epilayers. The crystal structure of AEPyBiI was determined using synchrotron radiation single-crystal X-ray diffraction. AEPyBiI was extensively characterized using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-vis spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopies, thermogravimetry-differential thermal analysis (TG-DTA), elemental analysis, electrospray ionization mass spectroscopy (ESI-MS), and photoluminescence spectroscopy. AEPyBiI displays a zero-dimensional (0D) perovskite structure in which the inorganic part is constituted by binuclear units consisting of two face-sharing BiI6 octahedra (Bi2I9 3- units). The C30H22N2 2+ cations are stacked along the a-axis direction in a complex motif. Considering its noteworthy light-emitting properties coupled with an easy synthesis and environmental stability, and its composition that does not contain toxic lead or easily oxidable Sn(II), AEPyBiI is a promising candidate for environmentally friendly light-emitting devices.

3.
Entropy (Basel) ; 24(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205441

RESUMO

In the present study, the molar heat capacity of solid formamidinium lead iodide (CH5N2PbI3) was measured over the temperature range from 5 to 357 K using a precise automated adiabatic calorimeter. In the above temperature interval, three distinct phase transitions were found in ranges from 49 to 56 K, from 110 to 178 K, and from 264 to 277 K. The standard thermodynamic functions of the studied perovskite, namely the heat capacity C°p(T), enthalpy [H0(T) - H0(0)], entropy S0(T), and [G°(T) - H°(0)]/T, were calculated for the temperature range from 0 to 345 K based on the experimental data. Herein, the results are discussed and compared with those available in the literature as measured by nonclassical methods.

4.
J Phys Chem C Nanomater Interfaces ; 125(40): 21851-21861, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34676017

RESUMO

We report the results of a multi-technique study on the thermodynamics and kinetics of formamidinium lead iodide (FAPI) thermal decomposition. Thermodynamics was investigated by means of Knudsen effusion techniques. Kinetics was studied either by temperature-controlled powder X-ray diffraction or by two isoconversional treatments of differential scanning calorimetry data. FAPI appears to be much more thermally stable compared to methylammonium lead iodide, as predictable from the lower acidity of the formamidinium cation compared to methylammonium. The chemical processes responsible for its thermal degradation appear to be quite complex as highlighted by the composition of the gaseous phase evolved during the process. The apparent activation energy values of the decomposition obtained from X-ray diffraction (XRD) (112 ± 9 kJ/mol) and differential scanning calorimetry (DSC) measurements (205 ± 20 and 410 ± 20 kJ/mol, respectively, for the first and second decomposition steps identified by the deconvolution procedure) reflect the different steps of the process observed by the two techniques. The thermodynamic properties of the more important decomposition channels and the enthalpy of formation of FAPI were estimated by combining the results of Knudsen effusion measurements.

5.
ACS Appl Mater Interfaces ; 13(40): 47932-47944, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606231

RESUMO

p-Cu2O/n-TiO2 photoanodes were produced by electrodeposition of octahedral p-type Cu2O nanoparticles over n-type TiO2 nanotubes. The photoresponse of the composite p-n photoanodes was evaluated in photoelectrochemical cells operating at "zero-bias" conditions under either visible or UV-vis irradiation. In both operating conditions, the produced electrodes invariably followed the p-n-based photoanode operations but exhibited lower photoelectrochemical performance as compared to the bare n-TiO2 photoanode under UV-vis light. The reported experimental analysis evidenced that such decreased photoactivity is mainly induced by the scarce efficiency of the nanosized p-n interfaces upon irradiation. To overcome such limitation, a restructuring of the originally electrodeposited p-Cu2O was promoted, following a photoelectrochemical post-treatment strategy. p-Cu2O, restructured in a 2D leaf-like morphology, allowed reaching an improved photoelectrochemical performance for the p-n-based photoanode under UV-vis light. As compared to the bare n-TiO2 behavior, such improvement consisted of photoanodic currents up to three times larger. An analysis of the mechanisms driving the transition from compact (∼100 nm) octahedral p-Cu2O to wider (∼1 µm) 2D leaf-like structures was performed, which highlighted the pivotal role played by the irradiated n-TiO2 NTs.

6.
J Phys Chem Lett ; 12(23): 5456-5462, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081469

RESUMO

Lead halide perovskites are outstanding materials for optoelectronics, but they typically feature low stability against external agents. To overcome this drawback, LHPs based on quaternary ammonium cations, such as phenyl viologen lead iodide (PhVPI), were found to be promising candidates, being water-resistant and thermally stable. In this Letter, the optoelectronic properties of the PhVPI are investigated by a combined experimental-theoretical approach. Although the as-prepared material is photoluminescence-inactive, a short thermal (5 min @ 290 °C) or laser annealing turns PhVPI into a highly luminescent material, in the 600-1000 nm range. The PhVPI PL emission was characterized at different annealing conditions, and the structural evolution following thermal treatments was investigated by means of X-ray diffraction, Raman, and NMR spectroscopies. Besides this, the electronic structure and emission properties were investigated by density functional theory simulations. The intense optical emission and high stability make PhVPI an intriguing material for applications related to light-emitting devices.

7.
Materials (Basel) ; 13(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369898

RESUMO

The properties of poly(vinyl alcohol) (PVA)-based composites recommend this material as a good candidate for the replacement of damaged cartilage, subchondral bone, meniscus, humeral joint and other orthopedic applications. The manufacturing process can be manipulated to generate the desired biomechanical properties. However, the main shortcomings of PVA hydrogels are related to poor strength and bioactivity. To overcome this situation, reinforcing elements are added to the PVA matrix. The aim of our work was to develop and characterize a novel composition based on PVA reinforced with Se-doped TiO2 nanoparticles and natural hydroxyapatite (HA), for possible orthopedic applications. The PVA/Se-doped TiO2 composites with and without HA were structurally investigated by FTIR and XRD, in order to confirm the incorporation of the inorganic phase in the polymeric structure, and by SEM and XRF, to evidence the ultrastructural details and dispersion of nanoparticles in the PVA matrix. Both the mechanical and structural properties of the composites demonstrated a synergic reinforcing effect of HA and Se-doped TiO2 nanoparticles. Moreover, the tailorable properties of the composites were proved by the viability and differentiation potential of the bone marrow mesenchymal stem cells (BMMSC) to osteogenic, chondrogenic and adipogenic lineages. The novel hybrid PVA composites show suitable structural, mechanical and biological features to be considered as a promising biomaterial for articular cartilage and subchondral bone repair.

8.
Dalton Trans ; 49(8): 2616-2627, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32039432

RESUMO

A novel black organoammonium iodoplumbate semiconductor, namely phenyl viologen lead iodide C22H18N2(PbI3)2 (PhVPI), was successfully synthesized and characterized. This material showed physical and chemical properties suitable for photovoltaic applications. Indeed, low direct allowed band gap energy (Eg = 1.32 eV) and high thermal stability (up to at least 300 °C) compared to methylammonium lead iodide CH3NH3PbI3 (MAPI, Eg = 1.5 eV) render PhVPI potentially attractive for solar cell fabrication. The compound was extensively characterized by means of X-ray diffraction (performed on both powder and single crystals), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), UV-photoelectron spectroscopy (UPS), FT-IR spectroscopy, TG-DTA, and CHNS analysis. Reactivity towards water was monitored through X-ray powder diffraction carried out after prolonged immersion of the material in water at room temperature. Unlike its methyl ammonium counterpart, PhVPI proved to be unaffected by water exposure. The lack of reactivity towards water is to be attributed to the quaternary nature of the nitrogen atoms of the phenyl viologen units that prevents the formation of acid-base equilibria when in contact with water. On the other hand, PhVPI's thermal stability was evaluated by temperature-controlled powder XRD measurements following an hour-long isothermal treatment at 250 and 300 °C. In both cases no signs of decomposition could be detected. However, the compound melted incongruently at 332 °C producing, upon cooling, a mostly amorphous material. PhVPI was found to be slightly soluble in DMF (∼5 mM) and highly soluble in DMSO. Nevertheless, its solubility in DMF can be dramatically increased by adding an equimolar amount of DMSO. Therefore, phenyl viologen lead iodide can be amenable for the fabrication of solar devices by spin coating as actually done for MAPI-based cells. The crystal structure, determined by means of single crystal X-ray diffraction using synchrotron radiation, turned out to be triclinic and consequently differs from the prototypal perovskite structure. In fact, it comprises infinite double chains of corner-sharing PbI6 octahedra along the a-axis direction with phenyl viologen cations positioned between the columns. Finally, the present determination of PhVPI's electronic band structure achieved through UPS and UV-Vis DRS is instrumental in using the material for solar cells.

9.
Phys Chem Chem Phys ; 21(44): 24768-24777, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31686067

RESUMO

Organoammonium lead halide perovskites, especially methylammonium lead iodide CH3NH3PbI3, are promising photovoltaic materials, but they are far from commercial applications due in particular to their thermal instability and moisture sensitivity. Here, we present a multitechnique study aimed at investigating the kinetic and thermodynamic stability of the simplest quaternary ammonium lead iodide, tetramethylammonium lead iodide N(CH3)4PbI3. The kinetics of thermal decomposition was studied by X-ray powder diffraction of samples treated in air at different temperatures combined with Rietveld quantitative phase analysis, and by the isoconversional analysis of differential thermal analysis measurements. Evidence for first order kinetics was obtained, with an activation energy of 280-290 kJ mol-1, suggesting that the breaking of the C-N bond is the rate determining step. The composition of the gas phase released under heating was investigated by Knudsen Effusion Mass Spectrometry, giving evidence for the occurrence of the process N(CH3)4PbI3(s) = PbI2(s) + N(CH3)3(g) + CH3I(g), consistent with the kinetic results. Decomposition pressures and thermodynamic properties were derived by Knudsen effusion mass loss experiments, obtaining values of 391.5 ± 2.0 kJ mol-1 and -577.4 ± 4.0 kJ mol-1 for the decomposition and formation enthalpies at 298 K, respectively. The reactivity towards water of N(CH3)4PbI3 was checked by XRD after total and prolonged immersion in water at room temperature. Overall, N(CH3)4PbI3 was found to be thermally much more stable than CH3NH3PbI3, both kinetically and thermodynamically, and much less prone to water-induced degradation, suggesting that the use of a quaternary ammonium cation may be an effective strategy in order to produce more stable materials.

10.
Dalton Trans ; 48(16): 5397-5407, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30946403

RESUMO

The synthesis of hydroxylammonium lead iodide NH3OHPbI3 was accomplished by means of the reaction between water solutions of HI and NH2OH with PbI2 in sulfolane in conjunction with either crystallization by CH2Cl2 vapor diffusion or sulfolane extraction with toluene. The appropriate choice of the solvent was found to be crucial in order to attain the desired material. The synthesized compound was extensively characterized by single crystal and powder X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, FT-IR spectroscopy, 1H-NMR spectroscopy, TG-DTA-QMS EGA (Evolved Gas Analysis), ESI-MS, and CHNS analysis. NH3OHPbI3 is an extremely reactive, deliquescent solid that easily oxidizes in air releasing iodine. Furthermore, it is the first reported perovskite to melt (m.p. around 80 °C) before decomposing exothermally at 103 °C. Such a chemical behavior, together with its optical absorption properties (i.e. yellow-colored perovskite), renders this material totally unsuitable for photovoltaic applications. The deliquescence of the material is to be ascribed to the strong hydrophilicity of hydroxylammonium ion. On the other hand, the relatively high Brønsted acidity of hydroxylammonium (pKa = 5.97) compared to other ammonium cations, promotes the reduction of atmospheric oxygen to water and the NH3OHPbI3 oxidation. The crystal structure, determined by single crystal X-ray diffraction with synchrotron radiation, is orthorhombic, but differs from the prototypal perovskite structure. Indeed it comprises infinite chains of face-sharing PbI6 octahedra along the c-axis direction with hydroxylammonium cations positioned between the columns, forming layers on the ac plane. The solvent intercalates easily between the layers. The crystal structure is apparently anomalous considering that the expected Goldschmidt's tolerance factor for the system (0.909) lies in the range of a stable prototypal perovskite structure. Therefore, the strong hydrogen bond forming tendency of hydroxylamine is likely to account for the apparent structural anomaly.

11.
ACS Appl Bio Mater ; 2(11): 5077-5092, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021451

RESUMO

The manufacturing of artificial bone grafts can potentially circumvent the issues associated with current bone grafting treatments for critical-size bone defects caused by pathological disorders, trauma, or massive tumor ablation. In this study, we report on a potentially patient-specific fabrication process in which replicas of bone defects, in particular zygomatic and mandibular bones and phalanxes of a hand finger, were manufactured by laser stereolithography and used as templates for the creation of PDMS molds. Gas-in-water foams were cast in the molds, rapidly frozen, freeze-dried, and cross-linked. Since bone matrix consists essentially of collagen and hydroxyapatite, biomimetic scaffolds were fabricated using gelatin and hydroxyapatite in a ratio very similar to that found in bone. The obtained composite scaffolds were excellent replicas of the original bone defects models and presented both a superficial and internal porous texture adequate for cellular and blood vessels infiltration. In particular, scaffolds exhibited a porous texture consisting of pores and interconnects with average size of about 300 and 100 µm, respectively, and a porosity of 90%. In vitro culture tests using hMSCs demonstrated scaffold biocompatibility and capacity in inducing differentiation toward osteoblasts progenitors. In vivo cellularized implants showed bone matrix deposition and recruitment of blood vessels. Overall, the technique/materials combination used in this work led to the fabrication of promising mechanically stable, bioactive, and biocompatible composite scaffolds with well-defined architectures potentially valuable in the regeneration of patient-specific bone defects.

12.
Materials (Basel) ; 11(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997339

RESUMO

A new and simple procedure for the deposition of lead (II, IV) oxide films by screen printing was developed. In contrast to conventional electrochemical methods, films can be also deposited on non-conductive substrates without any specific dimensional restriction, being the only requirement the thermal stability of the substrate in air up to 500 °C to allow for the calcination of the screen printing paste and sintering of the film. In this study, films were exploited for the preparation of both photoresponsive devices and photoelectrochemical cell photoanodes. In both cases, screen printing was performed on FTO (Fluorine-Tin Oxide glass) substrates. The photoresponsive devices were tested with I-V curves in dark and under simulated solar light with different irradiation levels. Responses were evaluated at different voltage biases and under light pulses of different durations. Photoelectrochemical cells were tested by current density⁻voltage (J-V) curves under air mass (AM) 1.5 G illumination, incident photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy.

13.
J Phys Chem Lett ; 9(13): 3756-3765, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29901394

RESUMO

The role of thermodynamics in assessing the intrinsic instability of the CH3NH3PbX3 perovskites (X = Cl,Br,I) is outlined on the basis of the available experimental information. Possible decomposition/degradation pathways driven by the inherent instability of the material are considered. The decomposition to precursors CH3NH3X(s) and PbX2( s) is first analyzed, pointing out the importance of both the enthalpic and the entropic factor, the latter playing a stabilizing role making the stability higher than often asserted. For CH3NH3PbI3, the disagreement between the available calorimetric results makes the stability prediction uncertain. Subsequently, the gas-releasing decomposition paths are discussed, with emphasis on the discrepant results presently available, probably reflecting the predominance of thermodynamic or kinetic control. The competition between the formation of NH3(g) + CH3X(g), CH3NH2(g) + HX(g) or CH3NH3X(g) is analyzed, in comparison with the thermal decomposition of methylammonium halides. In view of the scarce and inconclusive thermodynamic studies to-date available, the need for further experimental data is emphasized.

14.
Sci Rep ; 7: 46867, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749928

RESUMO

This corrects the article DOI: 10.1038/srep31896.

15.
Nanotechnology ; 27(43): 435601, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27655270

RESUMO

High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.

16.
Sci Rep ; 6: 31896, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545661

RESUMO

The interest of the scientific community on methylammonium lead halide perovskites (MAPbX3, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl3, MAPbBr3 and MAPbI3. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

17.
Sci Rep ; 5: 16785, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26577287

RESUMO

Solid solutions of the rare earth (RE) cations Pr(3+), Nd(3+), Sm(3+), Gd(3+), Er(3+) and Yb(3+) in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m(2)/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr(3+), Nd(3+)) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm(3+) onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er(3+) at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms.

18.
J Biomed Mater Res B Appl Biomater ; 103(8): 1621-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25557461

RESUMO

AIMS: The aim of this work was to deposit silicon-substituted hydroxyapatite (Si-HAp) coatings on titanium for biomedical applications, since it is known that Si-HAp is able to promote osteoblastic cells activity, resulting in the enhanced bone ingrowth. MATERIALS AND METHODS: Pulsed laser deposition (PLD) method was used for coatings preparation. For depositions, Si-HAp targets (1.4 wt % of Si), made up from nanopowders synthesized by wet method, were used. RESULTS: Microstructural and mechanical properties of the produced coatings, as a function of substrate temperature, were investigated by scanning electron and atomic force microscopies, X-ray diffraction, Fourier transform infrared spectroscopy, and Vickers microhardness. In the temperature range of 400-600°C, 1.4-1.5 µm thick Si-HAp films, presenting composition similar to that of the used target, were deposited. The prepared coatings were dense, crystalline, and nanostructured, characterized by nanotopography of surface and enhanced hardness. Whereas the substrate temperature of 750°C was too high and led to the HAp decomposition. Moreover, the bioactivity of coatings was evaluated by in vitro tests in an osteoblastic/osteoclastic culture medium (α-Modified Eagle's Medium). CONCLUSIONS: The prepared bioactive Si-HAp coatings could be considered for applications in orthopedics and dentistry to improve the osteointegration of bone implants.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Lasers , Nanoestruturas/química , Titânio/química
19.
PLoS One ; 9(8): e105788, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153181

RESUMO

The thermodynamic stability of onion-like carbon (OLC) nanostructures with respect to highly oriented pyrolytic graphite (HOPG) was determined in the interval 765-1030 K by the electromotive force (emf) measurements of solid electrolyte galvanic cell: (Low) Pt|Cr3C2,CrF2,OLC|CaF2s.c.|Cr3C2,CrF2,HOPG|Pt (High). The free energy change of transformation HOPG = OLC was found positive below 920.6 K crossing the zero value at this temperature. Its trend with temperature was well described by a 3rd degree polynomial. The unexpected too high values of [Formula: see text] jointly to the HR-TEM, STEM and EELS evidences that showed OLC completely embedded in rigid cages made of a Cr3C2/CrF2 matrix, suggested that carbon in the electrodes experienced different internal pressures. This was confirmed by the evaluation under constant volume of [dP/dT by the α/κ ratio for OLC (0.5 MPa K(-1)) and HOPG (8 Pa K(-1)) where α and κ are the isobaric thermal expansion and isothermal compressibility coefficients, respectively. The temperature dependency of the pressure was derived and utilized to calculate the enthalpy and entropy changes as function of temperature and pressure. The highest value of the internal pressure experienced by OLC was calculated to be about 7 GPa at the highest temperature. At 920.6 K, ΔrH and ΔrS values are 95.8 kJ mol(-1) and 104.1 JK(-1) mol(-1), respectively. The surface contributions to the energetic of the system were evaluated and they were found negligible compared with the bulk terms. As a consequence of the high internal pressure, the values of the enthalpy and entropy changes were mainly attributed to the formation of carbon defects in OLC considered as multishell fullerenes. The change of the carbon defect fraction is reported as a function of temperature.


Assuntos
Carbono/química , Grafite/química , Temperatura Alta , Materiais Biocompatíveis , Nanoestruturas , Termodinâmica
20.
ACS Appl Mater Interfaces ; 3(9): 3738-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21877743

RESUMO

Attempts to synthesize and/or theoretically predict new superhard materials are the subject of an intense research activity. The trials to deposit them in the form of films have just began. WB(2) (77 wt % WB(2) and 23 wt % WB(4)) and WB(4) (65 wt % WB(4) and 35 wt % WB(2)) polycrystalline bulk samples were obtained in this work via electron beam synthesis technique and, subsequently, used as targets for films preparation by the pulsed laser deposition method. The targets were irradiated by a frequency-doubled Nd:glass laser with a pulse duration of 250 fs. The films grown on SiO(2) substrates at 600 °C were characterized by X-ray diffraction, scanning electron and atomic force microscopies, and Vickers microhardness technique. The deposited films are composed of WB(4). The intrinsic film hardness, calculated according to the "law-of-mixtures" model, lies in the superhardness region 42-50 GPa.


Assuntos
Compostos de Boro/química , Lasers de Estado Sólido , Tungstênio/química , Compostos de Boro/síntese química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Dióxido de Silício/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...