Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 126936, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722645

RESUMO

Green seaweeds are a widespread group of marine macroalgae that could be regarded as biorenewable source of valuable compounds, in particular sulfated polysaccharides like ulvans with interesting biological properties. Among them, anti-inflammatory activity represents an interesting target, since ulvans could potentially avoid side effects of conventional therapies. However, a great variability in ulvan content, composition, structure and properties occurs depending on seaweed specie and growth and processing conditions. All these aspects should be carefully considered in order to have reproducible and well characterized products. This review presents some concise ideas on ulvan composition and general concepts on inflammation mechanisms. Then, the main focus is on the importance of adequate selection of extraction, depolymerization and purification technologies followed by an updated survey on anti-inflammatory properties of ulvans through modulation of different signaling pathways. The potential application in a number of diseases, with special emphasis on inflammaging, gut microbiota dysbiosis, wound repair, and metabolic diseases is also discussed. This multidisciplinary overview tries to present the potential of ulvans considering not only mechanistic, but also processing and applications aspects, trusting that it can aid in the development and application of this widely available and renewable resource as an efficient and versatile anti-inflammatory agent.


Assuntos
Polissacarídeos , Alga Marinha , Polissacarídeos/química , Alga Marinha/química , Sulfatos/química , Anti-Inflamatórios/farmacologia
2.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443349

RESUMO

Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 µg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 µg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 µg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 µg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pele/microbiologia , Ulva/química , Bactérias/patogenicidade , Relação Dose-Resposta a Droga , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/crescimento & desenvolvimento , Propionibacteriaceae/patogenicidade , Propionibacteriaceae/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/fisiologia , Virulência/efeitos dos fármacos
3.
Mar Drugs ; 19(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802739

RESUMO

Ulva sp. is known to be a source of bioactive compounds such as ulvans, but their biological activity on human dermal fibroblast extracellular matrix (ECM) is poorly reported. In this work, the regulation of ECM has been investigated for the first time at both proteomic and transcriptomic levels in normal human skin dermal fibroblasts, after 48 h of incubation with poly- and oligosaccharide fractions from Ulva sp. obtained after enzyme-assisted extraction and depolymerization. Cell proliferation enhancement (up to +68%) without exhibiting any cytotoxic effect on fibroblasts was demonstrated at 50 and 1000 µg/mL by both fractions. At the proteomic level, polysaccharide fractions at 1000 µg/mL enhanced the most the synthesis of glycosaminoglycans (GAGs, up to +57%), total collagen, especially types I (up to +217%) and III, as well as the synthesis and activity of MMP-1 (Matrix Metalloproteinase-1, up to +309%). In contrast, oligosaccharide fractions had no effect on GAGs synthesis but exhibited similarities for collagens and MMP-1 regulation. At the transcriptomic level, the decrease of COL1A1 and COL1A2 expression, and increase of COL3A1 and MMP-1 expression, confirmed the modulation of ECM metabolism by both fractions. Our research emphasizes that poly- and oligosaccharide Ulva sp. fractions exhibit interesting biological activities and supports their potential use in the area of skin renewal for anti-aging dermo-cosmetic applications.


Assuntos
Fibroblastos/efeitos dos fármacos , Oligossacarídeos/farmacologia , Polissacarídeos/farmacologia , Ulva/química , Proliferação de Células/genética , Células Cultivadas , Colágeno/metabolismo , Cosméticos/isolamento & purificação , Cosméticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Oligossacarídeos/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteômica , Pele/citologia , Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos
4.
Microorganisms ; 8(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171837

RESUMO

Dermatological and cosmetics fields have recently started to focus on the human skin microbiome and microbiota, since the skin microbiota is involved in the health and dysbiosis of the skin ecosystem. Amongst the skin microorganisms, Staphylococcus epidermidis and Cutibacterium acnes, both commensal bacteria, appear as skin microbiota sentinels. These sentinels have a key role in the skin ecosystem since they protect and prevent microbiota disequilibrium by fighting pathogens and participate in skin homeostasis through the production of beneficial bacterial metabolites. These bacteria adapt to changing skin microenvironments and can shift to being opportunistic pathogens, forming biofilms, and thus are involved in common skin dysbiosis, such as acne or atopic dermatitis. The current evaluation methods for cosmetic active ingredient development are discussed targeting these two sentinels with their assets and limits. After identification of these objectives, research of the active cosmetic ingredients and products that maintain and promote these commensal metabolisms, or reduce their pathogenic forms, are now the new challenges of the skincare industry in correlation with the constant development of adapted evaluation methods.

5.
Metabolites ; 9(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547343

RESUMO

Data on fractionation and depolymerization of the matrix ulvan polysaccharides, and studies on the biological activities on skin cells, are very scarce. In this work, crude ulvans were produced by using EAE (enzyme-assisted extraction) and compared to maceration (an established procedure). After different fractionation procedures-ethanolic precipitation, dialysis, or ammonium sulfate precipitation-the biochemical composition showed that EAE led to an increased content in ulvans. Coupling EAE to sulfate ammonium precipitation led to protein enrichment. Oligosaccharides were obtained by using radical depolymerization by H2O2 and ion-exchange resin depolymerization. Sulfate groups were partially cleaved during these chemical treatments. The potential bioactivity of the fractions was assessed using a lipoxygenase inhibition assay for anti-inflammatory activity and a WST-1 assay for human dermal fibroblast viability and proliferation. All ulvans extracts, poly- and oligosaccharidic fractions from EAE, expanded the fibroblast proliferation rate up to 62%. Our research emphasizes the potential use of poly- and oligosaccharidic fractions of Ulva sp. for further development in cosmetic applications.

6.
Mar Biotechnol (NY) ; 20(4): 436-450, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29627869

RESUMO

The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.


Assuntos
Exoesqueleto/química , Condrócitos/efeitos dos fármacos , Matriz Extracelular , Pecten/química , Idoso , Idoso de 80 Anos ou mais , Agrecanas/genética , Agrecanas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fenótipo
7.
Cytotechnology ; 69(5): 815-829, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28474214

RESUMO

Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.

8.
PLoS One ; 9(6): e99931, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949635

RESUMO

Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.


Assuntos
Exoesqueleto/química , Matriz Extracelular/efeitos dos fármacos , Pecten/química , Extratos de Tecidos/farmacologia , Animais , Fibroblastos/efeitos dos fármacos , Humanos , Cultura Primária de Células , Pele/efeitos dos fármacos , Extratos de Tecidos/química
9.
Chemosphere ; 110: 120-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24630249

RESUMO

The present study was conducted to determine the toxicity of different polychlorinated biphenyls (PCBs) on the green algae, Pseudokirchneriella subcapitata and the haemocytes from the European abalone, Haliotis tuberculata. Using the algal growth inhibition test, the green algae median Effective Concentration (EC50) values ranged from 0.34µM for PCB28 to more than 100µM for PCBs 101 and 153. Considering the MTT viability test, the abalone EC50 values ranged from 1.67µM for PCB153 to 89µM for PCB28. Our results in contrast to previous observation in vertebrates did not show significant differences between the dioxin like- and non dioxin like-PCBs toxicities regardless of the model used. However, our results demonstrated that the toxicities of PCBs were species dependent. For example, PCB28 was the most toxic compound for P. subcapitata whereas PCBs 1, 180 and 153 were less toxic for that species. On the contrary, PCB153 was reported as the most toxic for H. tuberculata haemocytes and PCB28 the least toxic. To investigate the mode of action of these compounds, we used an in silico method. Our results suggested that PCBs have a non-specific mode of action (e.g., narcosis) on green algae, and another mode of action, probably more specific than narcosis, was reported for PCBs on the abalone haemocytes.


Assuntos
Clorófitas/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Gastrópodes/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Clorófitas/fisiologia , Gastrópodes/citologia , Gastrópodes/fisiologia , Hemócitos/citologia , Dibenzodioxinas Policloradas
10.
Mar Pollut Bull ; 64(9): 1911-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22770699

RESUMO

Two types of exposures were performed to assess the effects of zinc released from sacrificial anode degradation: a chronic exposure, in which oysters were exposed to 0.53±0.04 mg Zn L(-1) for 10 weeks, and an acute exposure, where oysters were exposed to 10.2±1.2 mg Zn L(-1) for 1 week. At the end of the acute exposure experiment, 81.8% mortality was recorded. In contrast, no mortality was detected after 10 weeks exposure. Moreover, all of the immune system biomarkers studied, except the number of circulating haemocytes, were stimulated by a moderate level of zinc and inhibited by a high level. Our exposure conditions did not induce SOD or MXR mRNA expression in gills and digestive gland. However, an increase of MT mRNA is observed in these tissues. The results indicate that oysters are sensitive to acute zinc toxicity but are only moderately affected by a mild zinc concentration.


Assuntos
Crassostrea/efeitos dos fármacos , Monitoramento Ambiental , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo , Animais , Biomarcadores/metabolismo , Crassostrea/fisiologia , Metalotioneína/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
11.
Aquat Toxicol ; 109: 213-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22018399

RESUMO

Among metals, cadmium, a non-essential element, is an important pollutant that is released into aquatic environments. Due to its persistence and bioaccumulation, this metal has been shown to exert immunological effects on organisms. The objective of the present study was to investigate the in vitro effects of cadmium chloride using a haemocyte primary culture from the European abalone, Haliotis tuberculata. Most studies have maintained viable haemocytes in vitro for periods ranging from several hours to several days during acute exposures. Few investigations have reported the effects of metals using longer in vitro exposures, which are more realistic with regard to mimicking environmental conditions. In this study, we exposed abalone haemocytes to concentrations from 0.5 to 50,000 µgL(-1) of CdCl2 for 10 days. The effects of cadmium chloride were reflected in a significant decrease in the number of viable cells and morphological modifications in a concentration-dependent manner beginning at a concentration of 500 µgL(-1) as well as in some physiological processes, such as phagocytotic activity and the number of lysosome-positive cells. In contrast, phenoloxidase (PO) activity and reactive oxygen species (ROS) production were increased beginning at a concentration of 5 µgL(-1), which is consistent with environmental concentrations in polluted sites. For PO activity and ROS production, maximally 9-fold and 130% inductions, respectively, were recorded under the highest dose. These results thus indicate that cadmium chloride alters immune parameters of abalone haemocytes and that the long-term (10 days) primary culture system used here represents a suitable, sensitive in vitro model for assessing cytotoxic responses.


Assuntos
Cloreto de Cádmio/toxicidade , Gastrópodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Gastrópodes/enzimologia , Hemócitos/efeitos dos fármacos , Hemócitos/enzimologia , Monofenol Mono-Oxigenase/metabolismo , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...