Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 97(8): 1117, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30722508

RESUMO

Fruit rot of rambutan is a pre- and post-harvest disease problem of rambutan orchards. In 2011, fruit rot was observed at USDA-ARS orchards in Mayaguez, Puerto Rico. Infected fruit were collected and 1 mm2 tissue sections were surface disinfested with 70% ethanol followed by 0.5% sodium hypochlorite. Infected fruit were rinsed with sterile, deionized, double-distilled water and transferred to acidified potato dextrose agar (APDA). Plates were incubated at 25 ± 1°C for 6 days. Three isolates of Calonectria hongkongensis (Cah), CBS134083, CBS134084, and CBS134085, were identified morphologically using taxonomic keys (2,3). In APDA, colonies of Cah produced raw sienna to rust-colored aerial mycelial growth. Conidiophores of Cah had a penicillate arrangement of primary to quaternary branches of 2 to 6 phialides. Conidia (n = 50) were cylindrical, hyaline, 1-septate, rounded at both ends, and 44 to 52 µm × 3.5 to 4.5 µm. Conidiophores produced terminal and lateral stipe extensions with terminal sphaeropedunculate vesicles that were 8 to 12 µm wide. Subglobose to ovoid perithecia, 300 to 500 µm × 200 to 350 µm and orange to red-brown, were produced in groups of 3. Asci were clavate and contained 8 ascospores aggregated at the top of the ascus. Ascospores (n = 50) were hyaline, guttulate, fusoid with rounded ends, straight to curved, 1-septate with constriction at the septum, and 28 to 36 µm × 4 to 7 µm. For molecular identification, the ITS rDNA, fragments of ß-tubulin (BT), histone H3 (HIS3), and elongation factor (EF1-α) genes were amplified by PCR, sequenced, and compared using BLASTn with Calonectria spp. submitted to the NCBI GenBank. The sequences of Cah submitted to GenBank include accessions KC342208, KC342206, and KC342207 for ITS; KC342217, KC342215, and KC342216 for BT; KC342211, KC342209, and KC342210 for HIS3; and KC342214, KC342212, and KC342213 for EF1α. The sequences were >99% or identical with the ex-type specimen of Cah CBS 114828 for all genes used. Pathogenicity tests were conducted on 5 healthy superficially sterilized fruits per isolate. Both scalpel-wounded and unwounded fruit tissues were inoculated with 5-mm mycelial disks from 8-day-old pure cultures grown in APDA. Untreated controls were inoculated with APDA disks only. Fruits were kept in a humid chamber for 8 days at 25°C under 12 h of fluorescent light. The test was repeated once. Three days after inoculation (DAI), white mycelial growth was observed on the fruit. Five DAI, the fruit changed color from red to brown and yellowish mycelia colonized 50 to 62% of the fruit surface. Eight DAI, all the fruit turned brown, the mycelium growth covered the entire fruit, and conidiophores were produced on spinterns (hairlike appendages). Fruit rot of spinterns, exocarp (skin), endocarp (aril), and light brown discoloration were observed inside the fruit. Untreated controls showed no symptoms of fruit rot and no fungi were reisolated from tissue. Cah was reisolated from diseased tissue, fulfilling Koch's postulates. Calonectria spp. (or their Cylindrocladium asexual states) have been associated with lychee decline syndrome in North Vietnam (1). Both fruits belong to the Sapindaceae family. To our knowledge, this is the first report of Cah causing fruit rot of rambutan. References: (1) L. M. Coates et al. Diseases of Longan, Lychee and Rambutan. Pages 307-325 in: Diseases of Tropical Fruit Crops. R. C. Ploetz, ed. CABI Publishing, Cambridge, MA, 2003. (2) P. W. Crous. Taxonomy and Pathology of Cylindrocladium (Calonectria) and Allied Genera. APS Press, St Paul, MN, 2002. (3) P. W. Crous, et al. Stud. Mycol. 50:415, 2004.

2.
Plant Dis ; 96(8): 1225, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30727088

RESUMO

Post-harvest disease losses of rambutan (Nephelium lappaceum L.) have been reported worldwide and several pathogens have been associated with fruit rot (3,4). In 2011, fruit rot of rambutan was observed on 11-year-old trees at the USDA-ARS Tropical Agriculture Research Station in Mayaguez, Puerto Rico. Infected fruit sections (1 mm2) were surface-sterilized, rinsed with sterile deionized-distilled water, and transferred to acidified potato dextrose agar (APDA). Gliocephalotrichum bulbilium J.J. Ellis & Hesseltine (Gb) and G. simplex (J.A. Meyer) B. Wiley & E. Simmons (Gs) were identified using a taxonomic key (1). In corn meal agar (CMA), five isolates of Gb were light yellow-to-light brown. Conidiophores had sterile stipe extensions ranging from 120 to 150 µm long and were produced contiguous to the erect conidiogenous penicilli. Conidia were unicellular, smooth, oblong to elliptical, and 5.5 to 7.5 µm long by 2.0 to 2.5 µm wide. Bulbilloid aggregates were observed and averaged 70 µm long. In CMA, five isolates of Gs were light brown-to-chestnut brown. Conidiophores had sterile stipe extensions 130 to 180 µm long that were produced approximately 15 to 30 µm away from the conidiogenous penicilli. Conidia were unicellular, smooth, cylindrical to elliptical, and with slightly curved ends ranging from 6.5 to 8.5 µm long by 2.0 to 2.5 µm wide. Chlamydospores were unicellular, brown, smooth and thick-walled, averaging 35 µm long. Pathogenicity tests were conducted on five detached fruits per isolate. Five isolates of each Gliocephalotrichum spp. were inoculated on fruits using 5-mm mycelial disks of 8-day-old pure cultures grown in APDA. Untreated controls were inoculated with APDA disks only. Inoculated fruit was kept in a humid chamber for 8 days at 25°C under 12 hours of fluorescent light. Test was repeated once. Five days after inoculation (DAI), white mycelial growth for Gb and golden mycelial growth for Gs were observed on rambutan fruits. Eight DAI, fruit rot, and aril (flesh) rot symptoms were observed on fruits inoculated with isolates of Gb and Gs. Infected fruit changed in color from red to brown, and, on average, mycelia of Gb and Gs covered 50 and 60% of the fruit, respectively. Conidiophores were observed on spintems (hair-like appendages). Control fruit did not rot. Both species were reisolated from diseased plant tissue, thus fulfilling Koch's postulates. For molecular identification of these species of Gliocephalotrichum, the ITS1-5.8S-ITS2 region of the rDNA and a fragment of the ß-tubulin gene were amplified by PCR and aligned with other Gb and Gs sequences in NCBI GenBank for comparison. The sequences submitted to GenBank included Gs Accession Nos. JQ688045 and JQ688046 and Gb Accession Nos. JQ688044 and JQ68847 for the ITS sequences. For the ß-tubulin gene, Gs Accession Nos. JQ688049 and JQ688050 and Gb Accession Nos. JQ688048 and JQ688051. Both DNA regions had 99.9 to 100% sequence identity to other isolates of Gb and Gs reported in GenBank (1). Gliocephalotrichum spp. have been associated with rambutan fruit rot in Hawaii, Sri Lanka and Thailand (2,4). To our knowledge, this is the first report of G. bulbilium and G. simplex causing fruit rot of rambutan in Puerto Rico. References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) K. A. Nishijima and P. A. Follett. Plant Dis. 86:71, 2002. (3) L. M. Serrato et al. Phytopathology 100:S176, 2010. (4) D. Sivakumar et al. J. Natn. Sci. Coun. Sri Lanka 25:225, 1997.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...