Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1012533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389142

RESUMO

Shigella, the causative agent of bacillary dysentery, subvert cytoskeletal and trafficking processes to invade and replicate in epithelial cells using an arsenal of bacterial effectors translocated through a type III secretion system. Here, we review the various roles of the type III effector IpgD, initially characterized as phosphatidylinositol 4,5 bisphosphate (PI4,5P2) 4-phosphatase. By decreasing PI4,5P2 levels, IpgD triggers the disassembly of cortical actin filaments required for bacterial invasion and cell migration. PI5P produced by IpgD further stimulates signaling pathways regulating cell survival, macropinosome formation, endosomal trafficking and dampening of immune responses. Recently, IpgD was also found to exhibit phosphotransferase activity leading to PI3,4P2 synthesis adding a new flavor to this multipotent bacterial enzyme. The substrate of IpgD, PI4,5P2 is also the main substrate hydrolyzed by endogenous phospholipases C to produce inositoltriphosphate (InsP3), a major Ca2+ second messenger. Hence, beyond the repertoire of effects associated with the direct diversion of phoshoinositides, IpgD indirectly down-regulates InsP3-mediated Ca2+ release by limiting InsP3 production. Furthermore, IpgD controls the intracellular lifestyle of Shigella promoting Rab8/11 -dependent recruitment of the exocyst at macropinosomes to remove damaged vacuolar membrane remnants and promote bacterial cytosolic escape. IpgD thus emerges as a key bacterial effector for the remodeling of host cell membranes.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Fosfatidilinositóis/metabolismo , Shigella flexneri/metabolismo , Disenteria Bacilar/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
2.
PLoS Biol ; 19(7): e3001287, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283825

RESUMO

The accumulation of α-synuclein (α-syn) aggregates in specific brain regions is a hallmark of synucleinopathies including Parkinson disease (PD). α-Syn aggregates propagate in a "prion-like" manner and can be transferred inside lysosomes to recipient cells through tunneling nanotubes (TNTs). However, how lysosomes participate in the spreading of α-syn aggregates is unclear. Here, by using super-resolution (SR) and electron microscopy (EM), we find that α-syn fibrils affect the morphology of lysosomes and impair their function in neuronal cells. In addition, we demonstrate that α-syn fibrils induce peripheral redistribution of lysosomes, likely mediated by transcription factor EB (TFEB), increasing the efficiency of α-syn fibrils' transfer to neighboring cells. We also show that lysosomal membrane permeabilization (LMP) allows the seeding of soluble α-syn in cells that have taken up α-syn fibrils from the culture medium, and, more importantly, in healthy cells in coculture, following lysosome-mediated transfer of the fibrils. Moreover, we demonstrate that seeding occurs mainly at lysosomes in both donor and acceptor cells, after uptake of α-syn fibrils from the medium and following their transfer, respectively. Finally, by using a heterotypic coculture system, we determine the origin and nature of the lysosomes transferred between cells, and we show that donor cells bearing α-syn fibrils transfer damaged lysosomes to acceptor cells, while also receiving healthy lysosomes from them. These findings thus contribute to the elucidation of the mechanism by which α-syn fibrils spread through TNTs, while also revealing the crucial role of lysosomes, working as a Trojan horse for both seeding and propagation of disease pathology.


Assuntos
Lisossomos/metabolismo , Nanotubos , Dobramento de Proteína , alfa-Sinucleína/metabolismo , Animais , Permeabilidade da Membrana Celular , Técnicas de Cocultura , Humanos , Lisossomos/ultraestrutura , Microscopia Eletrônica
3.
PLoS Pathog ; 16(4): e1008446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282860

RESUMO

Microfold (M) cell host-pathogen interaction studies would benefit from the visual analysis of dynamic cellular and microbial interplays. We adapted a human in vitro M cell model to physiological bacterial infections, expression of fluorescent localization reporters and long-term three-dimensional time-lapse microscopy. This approach allows following key steps of M cell infection dynamics at subcellular resolution, from the apical onset to basolateral epithelial dissemination. We focused on the intracellular pathogen Shigella flexneri, classically reported to transcytose through M cells to initiate bacillary dysentery in humans, while eliciting poorly protective immune responses. Our workflow was critical to reveal that S. flexneri develops a bimodal lifestyle within M cells leading to rapid transcytosis or delayed vacuolar rupture, followed by direct actin motility-based propagation to neighboring enterocytes. Moreover, we show that Listeria monocytogenes, another intracellular pathogen sharing a tropism for M cells, disseminates in a similar manner and evades M cell transcytosis completely. We established that actin-based M cell-to-enterocyte spread is the major dissemination pathway for both pathogens and avoids their exposure to basolateral compartments in our system. Our results challenge the notion that intracellular pathogens are readily transcytosed by M cells to inductive immune compartments in vivo, providing a potential mechanism for their ability to evade adaptive immunity.


Assuntos
Disenteria Bacilar/microbiologia , Enterócitos/microbiologia , Células Epiteliais/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Shigella flexneri/fisiologia , Células CACO-2 , Humanos , Listeria monocytogenes/genética , Shigella flexneri/genética
4.
Cell Microbiol ; 20(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29250873

RESUMO

Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system-1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane-bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system-1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time-lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper-replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.


Assuntos
Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella enterica/fisiologia , Citosol/metabolismo , Citosol/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos
5.
J Vis Exp ; (87)2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24837001

RESUMO

Bacterial adhesion and growth on interfaces lead to the formation of three-dimensional heterogeneous structures so-called biofilms. The cells dwelling in these structures are held together by physical interactions mediated by a network of extracellular polymeric substances. Bacterial biofilms impact many human activities and the understanding of their properties is crucial for a better control of their development - maintenance or eradication - depending on their adverse or beneficial outcome. This paper describes a novel methodology aiming to measure in situ the local physical properties of the biofilm that had been, until now, examined only from a macroscopic and homogeneous material perspective. The experiment described here involves introducing magnetic particles into a growing biofilm to seed local probes that can be remotely actuated without disturbing the structural properties of the biofilm. Dedicated magnetic tweezers were developed to exert a defined force on each particle embedded in the biofilm. The setup is mounted on the stage of a microscope to enable the recording of time-lapse images of the particle-pulling period. The particle trajectories are then extracted from the pulling sequence and the local viscoelastic parameters are derived from each particle displacement curve, thereby providing the 3D-spatial distribution of the parameters. Gaining insights into the biofilm mechanical profile is essential from an engineer's point of view for biofilm control purposes but also from a fundamental perspective to clarify the relationship between the architectural properties and the specific biology of these structures.


Assuntos
Fenômenos Fisiológicos Bacterianos , Técnicas Bacteriológicas/métodos , Biofilmes , Magnetismo/métodos , Escherichia coli/genética , Escherichia coli/fisiologia , Fator F/genética , Magnetismo/instrumentação , Plasmídeos/genética
6.
Antimicrob Agents Chemother ; 58(4): 2221-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492362

RESUMO

The rising number of infections caused by biofilm formation and the difficulties associated with their treatment by conventional antimicrobial therapies have led to an intensive search for novel antibiofilm agents. Dermaseptins are antimicrobial peptides with a number of attractive properties that might offer alternative therapies against resistant microorganisms. In this study, we synthesized a set of dermaseptin-derived peptides and evaluated their activities against Gram-positive and Gram-negative bacterial biofilm formation. All dermaseptin-derived peptides demonstrated concentration-dependent antibiofilm activities at microgram concentrations, and their activities were dependent on the nature of the peptides, with the highest levels of activity being exhibited by highly charged molecules. Fluorescent binding and confocal microscopy demonstrated that dermaseptin K4S4, a substituted derivative of the native molecule S4, significantly decreased the viability of planktonic and surface-attached bacteria and stopped biofilm formation under dynamic flow conditions. Cytotoxicity assays with HeLa cells showed that some of the tested peptides were less cytotoxic than current antibiotics. Overall, these findings indicate that dermaseptin derivatives might constitute new lead structures for the development of potent antibiofilm agents.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana
7.
ISME J ; 8(6): 1275-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24451204

RESUMO

Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Colicinas/farmacologia , Antibacterianos/metabolismo , Colicinas/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Plâncton/efeitos dos fármacos , Resposta SOS em Genética
8.
PLoS One ; 8(5): e61628, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667443

RESUMO

Protection provided by host bacterial microbiota against microbial pathogens is a well known but ill-understood property referred to as the barrier effect, or colonization resistance. Despite recent genome-wide analyses of host microbiota and increasing therapeutic interest, molecular analysis of colonization resistance is hampered by the complexity of direct in vivo experiments. Here we developed an in vitro-to-in vivo approach to identification of genes involved in resistance of commensal bacteria to exogenous pathogens. We analyzed genetic responses induced in commensal Escherichia coli upon entry of a diarrheagenic enteroaggregative E. coli or an unrelated Klebsiella pneumoniae pathogen into a biofilm community. We showed that pathogens trigger specific responses in commensal bacteria and we identified genes involved in limiting colonization of incoming pathogens within commensal biofilm. We tested the in vivo relevance of our findings by comparing the extent of intestinal colonization by enteroaggregative E. coli and K. pneumoniae pathogens in mice pre-colonized with E. coli wild type commensal strain, or mutants corresponding to identified colonization resistance genes. We demonstrated that the absence of yiaF and bssS (yceP) differentially alters pathogen colonization in the mouse gut. This study therefore identifies previously uncharacterized colonization resistance genes and provides new approaches to unravelling molecular aspects of commensal/pathogen competitive interactions.


Assuntos
Biofilmes , Escherichia coli/genética , Escherichia coli/fisiologia , Genes Bacterianos/genética , Klebsiella pneumoniae/fisiologia , Simbiose , Animais , Feminino , Camundongos , Microbiota/genética , Microbiota/fisiologia , Especificidade da Espécie
9.
Biophys J ; 103(6): 1400-8, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995513

RESUMO

Most bacteria live in the form of adherent communities forming three-dimensional material anchored to artificial or biological surfaces, with profound impact on many human activities. Biofilms are recognized as complex systems but their physical properties have been mainly studied from a macroscopic perspective. To determine biofilm local mechanical properties, reveal their potential heterogeneity, and investigate their relation to molecular traits, we have developed a seemingly new microrheology approach based on magnetic particle infiltration in growing biofilms. Using magnetic tweezers, we achieved what was, to our knowledge, the first three-dimensional mapping of the viscoelastic parameters on biofilms formed by the bacterium Escherichia coli. We demonstrate that its mechanical profile may exhibit elastic compliance values spread over three orders of magnitude in a given biofilm. We also prove that heterogeneity strongly depends on external conditions such as growth shear stress. Using strains genetically engineered to produce well-characterized cell surface adhesins, we show that the mechanical profile of biofilm is exquisitely sensitive to the expression of different surface appendages such as F pilus or curli. These results provide a quantitative view of local mechanical properties within intact biofilms and open up an additional avenue for elucidating the emergence and fate of the different microenvironments within these living materials.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Imãs , Microtecnologia/métodos , Adesinas Bacterianas/metabolismo , Fenômenos Biomecânicos , Elasticidade , Escherichia coli/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Reologia , Viscosidade
10.
mBio ; 2(3): e00043-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21558434

RESUMO

UNLABELLED: Bacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted from in vitro mature biofilms formed by 122 natural Escherichia coli isolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animal E. coli strain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion of Staphylococcus aureus from mixed E. coli and S. aureus biofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices. IMPORTANCE: We sought to demonstrate that bacterial biofilms are reservoirs for unknown molecules that antagonize bacterial adhesion. The use of natural strains representative of Escherichia coli species biodiversity showed that nonbiocidal antiadhesion polysaccharides are frequently found in mature biofilm extracts (bacterium-free suspensions which contain soluble molecules produced within the biofilm). Release of an antiadhesion polysaccharide confers a competitive advantage upon the producing strain against clinically relevant pathogens such as Staphylococcus aureus. Hence, exploring the biofilm environment provides a better understanding of bacterial interactions within complex communities and could lead to improved control of pathogen colonization.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Humanos , Staphylococcus aureus/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 103(33): 12558-63, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16894146

RESUMO

The development of surface-attached biofilm bacterial communities is considered an important source of nosocomial infections. Recently, bacterial interference via signaling molecules and surface active compounds was shown to antagonize biofilm formation, suggesting that nonantibiotic molecules produced during competitive interactions between bacteria could be used for biofilm reduction. Hence, a better understanding of commensal/pathogen interactions within bacterial community could lead to an improved control of exogenous pathogens. To reveal adhesion or growth-related bacterial interference, we investigated interactions between uropathogenic and commensal Escherichia coli in mixed in vitro biofilms. We demonstrate here that the uropathogenic strain CFT073 and all E. coli expressing group II capsules release into their environment a soluble polysaccharide that induces physicochemical surface alterations, which prevent biofilm formation by a wide range of Gram-positive and Gram-negative bacteria. We show that the treatment of abiotic surfaces with group II capsular polysaccharides drastically reduces both initial adhesion and biofilm development by important nosocomial pathogens. These findings identify capsular polymers as antiadhesion bacterial interference molecules, which may prove to be of significance in the design of new strategies to limit biofilm formation on medical in dwelling devices.


Assuntos
Aderência Bacteriana , Biofilmes , Polissacarídeos Bacterianos/metabolismo , Infecções Bacterianas/prevenção & controle , Comunicação Celular/fisiologia , Escherichia coli/citologia , Escherichia coli/metabolismo , Propriedades de Superfície
12.
Infect Immun ; 74(4): 2102-14, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16552039

RESUMO

Enteroaggregative Escherichia coli (EAEC) is defined by a characteristic "stacked-brick" aggregative adherence (AA) pattern to cultured cells. In well-studied EAEC prototype strains (called typical EAEC strains), the AA phenotype requires aggregative adherence fimbriae (AAFs). However, previous studies suggest that known AAF alleles are not found in all EAEC strains. To define mechanisms contributing to adherence in an atypical strain, we studied EAEC strain C1096. An E. coli K12 derivative carrying two plasmids, designated pSERB1 and pSERB2, from C1096 adhered to cell lines and exhibited an AA pattern. Nucleotide sequence analysis of pSERB1 indicated that it is related to plasmids of the IncI1 incompatibility group. These plasmids encode genes involved in pilus-mediated conjugal transfer, as well as pilL-V, which encodes a second pilus of the type IV family. Insertional inactivation of the gene predicted to encode the major type IV pilin subunit (pilS) reduced conjugal transfer of the plasmid by 4 orders of magnitude. Adherence of the mutant strain to polystyrene and to HT29 cells was reduced by approximately 21% and 75%, respectively. In a continuous-flow microfermentor, the pilS inactivation reduced mature biofilm formation on a glass slide by approximately 50%. In addition, the simultaneous presence of both pSERB1 and pSERB2 plasmids promoted pilS-independent biofilm formation. We conclude that the IncI1 plasmid of EAEC C1096 encodes a type IV pilus that contributes to plasmid conjugation, epithelial cell adherence, and adherence to abiotic surfaces. We also observe that AA can be mediated by factors distinct from AAF adhesins.


Assuntos
Aderência Bacteriana/genética , Escherichia coli/genética , Plasmídeos/fisiologia , Aderência Bacteriana/fisiologia , Técnicas de Tipagem Bacteriana , Biofilmes/crescimento & desenvolvimento , Linhagem Celular Tumoral , Conjugação Genética/genética , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Escherichia coli/ultraestrutura , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Vidro , Células HT29 , Humanos , Dados de Sequência Molecular
13.
Mol Microbiol ; 51(3): 659-74, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14731270

RESUMO

The formation of biofilm results in a major lifestyle switch that is thought to affect the expression of multiple genes and operons. We used DNA arrays to study the global effect of biofilm formation on gene expression in mature Escherichia coli K-12 biofilm. We show that, when biofilm is compared with the exponential growth phase, 1.9% of the genes showed a consistent up- or downregulation by a factor greater than two, and that 10% of the E. coli genome is significantly differentially expressed. The functions of the genes induced in these conditions correspond to stress response as well as energy production, envelope biogenesis and unknown functions. We provide evidence that the expression of stress envelope response genes, such as the psp operon or elements of the cpx and rpoE pathways, is a general feature of E. coli mature biofilms. We also compared biofilm with the stationary growth phase and showed that the biofilm lifestyle, although sharing similarities with the stationary growth phase, triggers the expression of specific sets of genes. Using gene disruption of 54 of the most biofilm-induced genes followed by a detailed phenotypic study, we validated the biological relevance of our analysis and showed that 20 of these genes are required for the formation of mature biofilm. This group includes 11 genes of previously unknown function. These results constitute a comprehensive analysis of the global transcriptional response triggered in mature E. coli biofilms and provide insights into its physiological signature.


Assuntos
Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Perfilação da Expressão Gênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Estatística como Assunto
14.
Nucleic Acids Res ; 31(15): 4345-53, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12888493

RESUMO

Insertion sequences (IS)1397 and ISKpn1, found in Escherichia coli and Klebsiella pneumoniae, respectively, are IS3 family members that insert specifically into short palindromic repeated sequences (palindromic units or PUs). In this paper, we first show that although PUs are naturally absent from extrachromosomal elements, both ISs are able to transpose from the chromosome or from a plasmid into PUs artificially introduced into target plasmids. We also show that ISKpn1 target specificity is restricted to K.pneumoniae Z1 PU type, whereas IS1397 target specificity is less stringent since the IS targets the three E.coli Y, Z1 and Z2 PU types indifferently. Experiments of transposition of both ISs driven by both transposases demonstrate that the inverted repeats flanking the ISs are not responsible for this target specificity, which is entirely due to the transposase itself. Implications on ISs evolution are presented.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Klebsiella pneumoniae/genética , Transposases/metabolismo , Sequência de Bases , Cromossomos Bacterianos/genética , Plasmídeos/genética , Recombinação Genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...