Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(10): 2820-2830, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37205283

RESUMO

We demonstrate local phonon analysis of single AlN nanocrystals by two complementary imaging spectroscopic techniques: tip-enhanced Raman scattering (TERS) and nano-Fourier transform infrared (nano-FTIR) spectroscopy. Strong surface optical (SO) phonon modes appear in the TERS spectra with their intensities revealing a weak polarization dependence. The local electric field enhancement stemming from the plasmon mode of the TERS tip modifies the phonon response of the sample, making the SO mode dominate over other phonon modes. The TERS imaging allows the spatial localization of the SO mode to be visualized. We were able to probe the angle anisotropy on the SO phonon modes in AlN nanocrystals with nanoscale spatial resolution. The excitation geometry and the local nanostructure surface profile determine the frequency position of SO modes in nano-FTIR spectra. An analytical calculation explains the behaviour of SO mode frequencies vs. tip position with respect to the sample.

2.
ACS Appl Mater Interfaces ; 15(9): 12511-12523, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808946

RESUMO

Steady progress in integrated circuit design has forced basic metrology to adopt silicon lattice parameter as a secondary realization of the SI meter that lacks convenient physical gauges for precise surface measurements at a nanoscale. To employ this fundamental shift in nanoscience and nanotechnology, we propose a set of self-organized silicon surface morphologies as a gauge for height measurements within the whole nanoscale (0.3-100 nm) range. Using 2 nm sharp atomic force microscopy (AFM) probes, we have measured the roughness of wide (up to 230 µm in diameter) singular terraces and the height of monatomic steps on the step-bunched and amphitheater-like Si(111) surfaces. For both types of self-organized surface morphology, the root-mean-square terrace roughness exceeds 70 pm but has a little effect on step height measurements having 10 pm accuracy for AFM technique in air. We implement a step-free 230-µm-wide singular terrace as a reference mirror in an optical interferometer to reduce the systematic error of height measurements from >5 nm to about 0.12 nm, which allows visualizing 136-pm-high monatomic steps on the Si(001) surface. Then, using a "pit-patterned" extremely wide terrace with dense but counted monatomic steps in a pit wall, we have optically measured mean Si(111) interplanar spacing (313.8 ± 0.4 pm) that agrees well with the most precise metrological data (313.56 pm). This opens up avenues for the creation of silicon-based height gauges using bottom-up approaches and advances optical interferometry among techniques for metrology-grade nanoscale height measurements.

3.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354501

RESUMO

Quick label-free virus screening and highly sensitive analytical tools/techniques are becoming extremely important in a pandemic. In this study, we developed a biosensing device based on the silicon nanoribbon multichannel and dielectrophoretic controlled sensors functionalized with SARS-CoV-2 spike antibodies for the use as a platform for the detection and studding of properties of viruses and their protein components. Replicatively defective viral particles based on vesicular stomatitis viruses and HIV-1 were used as carrier molecules to deliver the target SARS-CoV-2 spike S-proteins to sensory elements. It was shown that fully CMOS-compatible nanoribbon sensors have the subattomolar sensitivity and dynamic range of 4 orders. Specific interaction between S-proteins and antibodies leads to the accumulation of the negative charge on the sensor surface. Nonspecific interactions of the viral particles lead to the positive charge accumulation. It was shown that dielectrophoretic controlled sensors allow to estimate the effective charge of the single virus at the sensor surface and separate it from the charge associated with the binding of target proteins with the sensor surface.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanotubos de Carbono , Humanos , SARS-CoV-2 , Técnicas Biossensoriais/métodos , Pandemias , Anticorpos Antivirais
4.
Faraday Discuss ; 214: 309-323, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839033

RESUMO

Since the first report in the early 2000s, there have been several experimental configurations that have demonstrated enhancement and spatial resolution of tip-enhanced Raman spectroscopy (TERS). The combination of a plasmonic substrate and a metallic tip is one suitable approach to achieve even higher enhancement and lateral resolution. In this contribution, we demonstrate TERS on a monolayer of MoS2 on an array of Au nanodisks. The Au nanodisks were prepared by electron beam writing. Thereafter, MoS2 was transferred onto the plasmonic substrate via the exfoliation technique. We witness an unprecedented enhancement and spatial resolution in the experiments. In the TERS image a ring-like shape is observed that matches the edges of the nanodisks. TERS enhancement at the edges is about 170 times stronger than at the center of the nanodisks. For a better understanding of the experimental results, finite element method (FEM) simulations were employed to simulate the TERS image of the MoS2/plasmonic heterostructure. Our calculations show a higher electric field concentration at the edges that exponentially decays to the center. Therefore, it reproduces the ring-like shape of the experimental image. Moreover, the calculations suggest a TERS enhancement of 135 at the edges compared to the center, which is in very good agreement with the experimental data. According to our calculations, the spatial resolution is also increased at the edges. For comparison, FEM simulations of a tip-flat metal substrate system (conventional gap-mode TERS) were carried out. The calculations confirmed a 110 times stronger enhancement at the edges of the nanodisks than that of conventional gap-mode TERS and explained the experimental maps. Our results provide not only a deeper understanding of the TERS mechanism of this heterostructure, but can also help in realizing highly efficient TERS experiments using similar systems.

5.
Beilstein J Nanotechnol ; 9: 2646-2656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416915

RESUMO

We report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption (SEIRA) by optical phonons of semiconductor nanocrystals (NCs) deposited on the arrays. The arrays of nano- and microantennas fabricated with nano- and photolithography reveal infrared-active LSPR modes of energy ranging from the mid to far-infrared that allow the IR response from very low concentrations of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir-Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays. The structural parameters of the arrays were confirmed by scanning electron microscopy. 3D full-wave electromagnetic simulations of the electromagnetic field distribution around the micro- and nanoantennas were employed to realize the maximal SEIRA enhancement for structural parameters of the arrays whereby the LSPR and the NC optical phonon energies coincide. The SEIRA experiments quantitatively confirmed the computational results. The maximum SEIRA enhancement was observed for linear nanoantennas with optimized structural parameters determined from the electromagnetic simulations. The frequency position of the feature's absorption seen in the SEIRA response evidences that the NC surface and transverse optical phonons are activated in the infrared spectra.

6.
Nanoscale ; 10(6): 2755-2763, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29308796

RESUMO

In this article, we present the results of a gap-plasmon tip-enhanced Raman scattering study of MoS2 monolayers deposited on a periodic array of Au nanostructures on a silicon substrate forming a two dimensional (2D) crystal/plasmonic heterostructure. We observe a giant Raman enhancement of the phonon modes in the MoS2 monolayer located in the plasmonic gap between the Au tip apex and Au nanoclusters. Tip-enhanced Raman mapping allows us to determine the gap-plasmon field distribution responsible for the formation of hot spots. These hot spots provide an unprecedented giant Raman enhancement of 5.6 × 108 and a spatial resolution as small as 2.3 nm under ambient conditions. Moreover, due to strong hot electron doping in the order of 1.8 × 1013 cm-2, we observe a structural change of MoS2 from the 2H to the 1T phase. Owing to the very good spatial resolution, we are able to spatially resolve those doping sites. To the best of our knowledge, this is the first time reporting of such a phenomenon with nm spatial resolution. Our results will open the perspectives of optical diagnostics with nanometer resolution for many other 2D materials.

7.
Beilstein J Nanotechnol ; 8: 975-981, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546892

RESUMO

Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA) for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

8.
Opt Express ; 24(7): 7133-50, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27137006

RESUMO

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.

9.
Beilstein J Nanotechnol ; 7: 1519-1526, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144502

RESUMO

The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9-30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon-phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations.

10.
J Nanosci Nanotechnol ; 15(6): 4170-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369026

RESUMO

Self-assembly of DNA concatemers from native duplexes and those containing non-nucleotidic bridges of varying polarity composed of repeating oligo(ethylene glycol) phosphates -O(CH2CH2O)(n)PO2- or α,Ω-alkanediol phosphates -O(CH2)10OPO2(-)- units was compared. The structures obtained were characterised by polyacrylamide gel electrophoresis, enzymatic digestion and AFM. Our results have revealed that chemically-modified duplexes favour self-termination of concatemer growth and yield up to 35% of nanosized DNA rings.


Assuntos
DNA Concatenado/química , Etilenoglicol/química , Nanoestruturas/química , Sequência de Bases , DNA Concatenado/metabolismo , Desoxirribonucleases/metabolismo , Microscopia de Força Atômica , Dados de Sequência Molecular , Oligonucleotídeos
11.
Beilstein J Nanotechnol ; 6: 2388-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734529

RESUMO

We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir-Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS "hot spots".

12.
Microsc Microanal ; 19 Suppl 5: 38-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920171

RESUMO

We report the direct visualization of point defect clustering in {113} planes of silicon crystal using a transmission electron microscope, which was supported by structural modeling and high-resolution electron microscope image simulations. In the initial stage an accumulation of nonbonded interstitial-vacancy (I-V) pairs stacked at a distance of 7.68 Å along neighboring atomic chains located on the {113} plane takes place. Further broadening of the {113} defect across its plane is due to the formation of planar fourfold coordinated defects (FFCDs) perpendicular to chains accumulating I-V pairs. Closely packed FFCDs create a sequence of eightfold rings in the {113} plane, providing sites for additional interstitials. As a result, the perfect interstitial chains are built on the {113} plane to create an equilibrium structure. Self-ordering of point defects driven by their nonisotropic strain fields is assumed to be the main force for point defect clustering in the {113} plane under the existence of an energy barrier for their recombination.

13.
J Med Chem ; 52(21): 6558-68, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19824650

RESUMO

Gene therapy based on gene delivery is a promising strategy for the treatment of human disease. Here we present data on structure/biological activity of new biodegradable cholesterol-based cationic lipids with various heterocyclic cationic head groups and linker types. Enhanced accumulation of nucleic acids in the cells mediated by the lipids was demonstrated by fluorescent microscopy and flow cytometry. Light scattering and atomic force microscopy were used to find structure/transfection activity correlations for the lipids. We found that the ability of the lipids to stimulate intracellular accumulation of the oligodeoxyribonucleotides and plasmid DNA correlates well with their ability to form in solution lipid/NA complexes of sizes that do not exceed 100 nm. Screening of the lipids revealed the most promising transfection agents both in terms of low toxicity and efficient delivery: cholesterol-based lipids with positively charged pyridine and methyl imidazole head groups and either the ester or carbamate linker.


Assuntos
Colesterol/análogos & derivados , Colesterol/síntese química , DNA/administração & dosagem , Portadores de Fármacos/síntese química , Transfecção/métodos , Animais , Cátions , Linhagem Celular , Colesterol/química , Colesterol/toxicidade , Codeína/análogos & derivados , Codeína/síntese química , Codeína/química , Codeína/toxicidade , Cricetinae , DNA/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Ésteres , Éteres , Citometria de Fluxo , Terapia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/toxicidade , Micelas , Microscopia de Força Atômica , Microscopia de Fluorescência , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/metabolismo , Piridinas/síntese química , Piridinas/química , Piridinas/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...