Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0133323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411061

RESUMO

Wastewater treatment plants (WWTPs) are indispensable biotechnology facilities for modern cities and play an essential role in modern urban infrastructure by employing microorganisms to remove pollutants in wastewater, thus protecting public health and the environment. This study conducted a 13-month bacterial community survey of six full-scale WWTPs in Hong Kong with samples of influent, activated sludge (AS), and effluent to explore their synchronism and asynchronism of bacterial community. Besides, we compared AS results of six Hong Kong WWTPs with data from 1,186 AS amplicon data in 269 global WWTPs and a 9-year metagenomic sequencing survey of a Hong Kong WWTP. Our results showed the compositions of bacterial communities varied and the bacterial community structure of AS had obvious differences across Hong Kong WWTPs. The co-occurrence analysis identified 40 pairs of relationships that existed among Hong Kong WWTPs to show solid associations between two species and stochastic processes took large proportions for the bacterial community assembly of six WWTPs. The abundance and distribution of the functional bacteria in worldwide and Hong Kong WWTPs were examined and compared, and we found that ammonia-oxidizing bacteria had more diversity than nitrite-oxidizing bacteria. Besides, Hong Kong WWTPs could make great contributions to the genome mining of microbial dark matter in the global "wanted list." Operational parameters had important effects on OTUs' abundance, such as the temperature to the genera of Tetrasphaera, Gordonia and Nitrospira. All these results obtained from this study can deepen our understanding of the microbial ecology in WWTPs and provide foundations for further studies. IMPORTANCE: Wastewater treatment plants (WWTPs) are an indispensable component of modern cities, as they can remove pollutants in wastewater to prevent anthropogenic activities. Activated sludge (AS) is a fundamental wastewater treatment process and it harbors a highly complex microbial community that forms the main components and contains functional groups. Unveiling "who is there" is a long-term goal of the research on AS microbiology. High-throughput sequencing provides insights into the inventory diversity of microbial communities to an unprecedented level of detail. At present, the analysis of communities in WWTPs usually comes from a specific WWTP and lacks comparisons and verification among different WWTPs. The wide-scale and long-term sampling project and research in this study could help us evaluate the AS community more accurately to find the similarities and different results for different WWTPs in Hong Kong and other regions of the world.


Assuntos
Poluentes Ambientais , Purificação da Água , Águas Residuárias , Esgotos/microbiologia , Hong Kong/epidemiologia , Bactérias/genética
2.
Water Res ; 223: 118992, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007402

RESUMO

The release of microplastics from sewage treatment works (STWs) into the oceans around coastal cities is well documented. However, there are fewer studies on the microplastic abundance in stormwater drains and their emissions into the coastal marine environment via sewage and stormwater drainage networks. Here, we comprehensively investigated microplastic abundance in 66 sewage and 18 sludge samples collected from different process stages at three typical STWs and 36 water samples taken from six major stormwater drains during the dry and wet seasons in Hong Kong, which is a metropolitan city in south China. The results showed that microplastics were detected in all the sewage and stormwater samples, with the abundance ranging from 0.07 to 91.9 and from 0.4 to 36.48 particles/L, respectively, and in all the sludge samples with the abundance ranging from 167 to 936 particles/g (d. w.). There were no significant seasonal variations in the microplastic abundance across all samples of sewage, sludge, and stormwater. For both waterborne sample types, a smaller size (0.02-0.3 mm) and fiber shape were the dominant characteristics of the microplastics. Polyethylene terephthalate (PET) and polypropylene (PP) were the most abundant polymer types in the sewage samples, while polyethylene (PE), PET, PP, and PE-PP copolymer were the most abundant polymer types in the stormwater samples. The estimated range of total daily microplastic loads in the effluent from STWs in Hong Kong is estimated to be 4.48 × 109 - 2.68 × 1010 particles/day, demonstrating that STWs are major pathways of microplastics in coastal environments despite the high removal percentage of microplastics in sewage treatment processes examined. This is the first comprehensive study on microplastics in the urban waters of a coastal metropolis. However, further studies on other coastal cities will enable an accurate estimation of the microplastic contribution of stormwater drains to the world's oceans.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Polietileno/análise , Polietilenotereftalatos , Polipropilenos/análise , Esgotos , Água , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 844: 157121, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787900

RESUMO

Wastewater-based epidemiology (WBE) for the SARS-CoV-2 virus in wastewater treatment plants (WWTPs) has emerged as a cost-effective and unbiased tool for population-level testing in the community. In the present study, we conducted a 6-month wastewater monitoring campaign from three WWTPs of different flow rates and catchment area characteristics, which serve 28 % (2.1 million people) of Hong Kong residents in total. Wastewater samples collected daily or every other day were concentrated using ultracentrifugation and the SARS-CoV-2 virus RNA in the supernatant was detected using the N1 and E primer sets. The results showed significant correlations between the virus concentration and the number of daily new cases in corresponding catchment areas of the three WWTPs when using 7-day moving average values (Kendall's tau-b value: 0.227-0.608, p < 0.001). SARS-CoV-2 virus concentration was normalized to a fecal indicator using PMMoV concentration and daily flow rates, but the normalization did not enhance the correlation. The key factors contributing to the correlation were also evaluated, including the sampling frequency, testing methods, and smoothing days. This study demonstrates the applicability of wastewater surveillance to monitor overall SARS-CoV-2 pandemic dynamics in a densely populated city like Hong Kong, and provides a large-scale longitudinal reference for the establishment of the long-term sentinel surveillance in WWTPs for WBE of pathogens which could be combined into a city-wide public health observatory.


Assuntos
COVID-19 , Purificação da Água , COVID-19/epidemiologia , Hong Kong/epidemiologia , Humanos , Pandemias , RNA Viral , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
4.
Appl Microbiol Biotechnol ; 100(20): 8975-82, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27464827

RESUMO

The effectiveness and treatment conditions of FeCl3- and AlCl3-coagulated municipal sewage sludge from chemically enhanced primary treatment (CEPT) using anaerobic digestion (AD) and the structure of microbial community were investigated. The results based on 297 measurements under different operational conditions demonstrate good average AD performance of CEPT sludge, that is, percent volatile solid reduction of 58 %, specific biogas production (or biogas yield) of 0.92 m(3)/kg volatile solids (VS) destroyed, and methane content of 65.4 %. FeCl3 dosing, organic loading rate, temperature, and hydraulic retention time all significantly affected AD performance. FeCl3 dosing greatly improved specific methane production (methane yield) by 38-54 % and significantly reduced hydrogen sulfide (H2S) content in biogas (from up to 13,250 to <200 ppm), contributing to higher methane recovery and simplified biogas cleaning for power generation. Metagenomic analysis suggested that anaerobic digesters of both CEPT sludge and combined primary and secondary sludge were dominated by Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, Thermotogae, and Chloroflexi. However, Methanomicrobia methanogens were better enriched in the anaerobic digesters of CEPT sludge than in the combined sludge. Further, different sources of CEPT sludge with various chemical properties nurtured shared and unique microbial community composition. Combined, this study supports AD as an efficient technology for CEPT sludge treatment and poses first insights into the microbial community structure.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biocombustíveis , Biota , Esgotos/microbiologia , Cloreto de Alumínio , Compostos de Alumínio/metabolismo , Anaerobiose , Precipitação Química , Cloretos/metabolismo , Compostos Férricos/metabolismo , Metagenômica
5.
Appl Microbiol Biotechnol ; 98(12): 5709-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24633414

RESUMO

This study applied Illumina high-throughput sequencing to explore the microbial communities and functions in anaerobic digestion sludge (ADS) from two wastewater treatment plants based on a metagenomic view. Taxonomic analysis using SILVA SSU database indicated that Proteobacteria (9.52-13.50 %), Bacteroidetes (7.18 %-10.65 %) and Firmicutes (7.53 %-9.46 %) were the most abundant phyla in the ADS. Differences of microbial communities between the two types of ADS were identified. Genera of Methanosaeta and Methanosarcina were the major methanogens. Functional analysis by SEED subsystems showed that the basic metabolic functions of metagenomes in the four ADS samples had no significant difference among them, but they were different from other microbial communities from activated sludge, human faeces, ocean and soil. Abundances of genes in methanogenesis pathway were also quantified using a methanogenesis genes database extracted from KEGG. Results showed that acetotrophic was the major methanogenic pathway in the anaerobic sludge digestion.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Esgotos/microbiologia , Purificação da Água , Anaerobiose , Archaea/genética , Bactérias/genética , Análise por Conglomerados , Biologia Computacional , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...