Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11818, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083685

RESUMO

Microfluidic vortex shedding (µVS) can rapidly deliver mRNA to T cells with high yield and minimal perturbation of the cell state. The mechanistic underpinning of µVS intracellular delivery remains undefined and µVS-Cas9 genome editing requires further studies. Herein, we evaluated a series of µVS devices containing splitter plates to attenuate vortex shedding and understand the contribution of computed force and frequency on efficiency and viability. We then selected a µVS design to knockout the expression of the endogenous T cell receptor in primary human T cells via delivery of Cas9 ribonucleoprotein (RNP) with and without brief exposure to an electric field (eµVS). µVS alone resulted in an equivalent yield of genome-edited T cells relative to electroporation with improved cell quality. A 1.8-fold increase in editing efficiency was demonstrated with eµVS with negligible impact on cell viability. Herein, we demonstrate efficient processing of 5 × 106 cells suspend in 100 µl of cGMP OptiMEM in under 5 s, with the capacity of a single device to process between 106 to 108 in 1 to 30 s. Cumulatively, these results demonstrate the rapid and robust utility of µVS and eµVS for genome editing human primary T cells with Cas9 RNPs.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Microfluídica/métodos , Linfócitos T/metabolismo , Sobrevivência Celular , Edição de Genes/métodos , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Hidrodinâmica , Modelos Teóricos , Transfecção/métodos , Transgenes
2.
Sci Rep ; 9(1): 3214, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824814

RESUMO

Intracellular delivery of functional macromolecules, such as DNA and RNA, across the cell membrane and into the cytosol, is a critical process in both biology and medicine. Herein, we develop and use microfluidic chips containing post arrays to induce microfluidic vortex shedding, or µVS, for cell membrane poration that permits delivery of mRNA into primary human T lymphocytes. We demonstrate transfection with µVS by delivery of a 996-nucleotide mRNA construct encoding enhanced green fluorescent protein (EGFP) and assessed transfection efficiencies by quantifying levels of EGFP protein expression. We achieved high transfection efficiency (63.6 ± 3.44% EGFP + viable cells) with high cell viability (77.3 ± 0.58%) and recovery (88.7 ± 3.21%) in CD3 + T cells 19 hrs after µVS processing. Importantly, we show that processing cells via µVS does not negatively affect cell growth rates or alter cell states. We also demonstrate processing speeds of greater than 2.0 × 106 cells s-1 at volumes ranging from 0.1 to 1.5 milliliters. Altogether, these results highlight the use of µVS as a rapid and gentle delivery method with promising potential to engineer primary human cells for research and clinical applications.


Assuntos
Proteínas de Fluorescência Verde/genética , Microfluídica/métodos , RNA Mensageiro/genética , Linfócitos T/metabolismo , Transfecção/métodos , Complexo CD3/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrodinâmica , Microfluídica/instrumentação , Simulação de Dinâmica Molecular , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transfecção/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...