Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(5): 2552-2564, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38221893

RESUMO

The established DLVO theory explains colloidal stability by the electrostatic repulsion between electrical double layers. While the routinely measured zeta potential can estimate the charges of double layers, it is only an average surface property which might deviate from the local environment. Moreover, other factors such as the ionic strength and the presence of defects should also be considered. To investigate this multivariate problem, here we model the interaction between a negatively charged Au particle and a negatively charged TiO2 surface containing positive/neutral defects (e.g. surface hydroxyls) based on the finite element method, over 6000 conditions of these 6 parameters: VPart (particle potential), VSurf (surface potential), VDef (defect potential), DD (defect density), Conc (salt concentration), and R (particle radius). Using logistic regression, the relative importance of these factors is determined: VSurf > VPart > DD > Conc > R > VDef, which agrees with the conventional wisdom that the surface (and zeta) potential is indeed the most decisive descriptor for colloidal interactions, and the salt concentration is also important for charge screening. However, when defects are present, it appears that their density is more influential than their potential. To predict the fate of interactions more confidently with all the factors, we train a support vector machine (SVM) with the simulation data, which achieves 97% accuracy in determining whether adsorption is favorable on the support. The trained SVM including a graphical user interface for querying the prediction is freely available online for comparing with other materials and models. We anticipate that our model can stimulate further colloidal studies examining the importance of the local environment, while simultaneously considering multiple factors.

2.
Angew Chem Int Ed Engl ; 62(12): e202213968, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625361

RESUMO

Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...