Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(1): 163-174, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33325953

RESUMO

Silver sulfide nanoparticles (Ag2S NPs) have gained considerable interest in the biomedical field due to their photothermal ablation enhancement, near-infrared fluorescence properties, low toxicity levels, and multi-imaging capabilities. Silver telluride nanoparticles (Ag2Te NPs) have similar properties to Ag2S NPs, should also be stable due to an extremely low solubility product and should generate greater X-ray contrast since tellurium is significantly more attenuating than sulfur at diagnostic X-ray energies. Despite these attractive properties, Ag2Te NPs have only been studied in vivo once and at a low dose (2 mg Ag per kg). Herein, for the first time, Ag2Te NPs' properties and their application in the biomedical field were studied in vivo in the setting requiring the highest nanoparticle doses of all biomedical applications, i.e. X-ray imaging. Ag2Te NPs were shown to be stable, biocompatible (no acute toxicity observed in the cell lines studied or in vivo), and generated higher contrast, compared to controls, in the two X-ray imaging techniques studied: computed tomography (CT) and dual-energy mammography (DEM). In summary, this is the first study where Ag2Te NPs were explored in vivo at a high dose. Our findings suggest that Ag2Te NPs provide strong X-ray contrast while exhibiting excellent biocompatibility. These results highlight the potential use of Ag2Te NPs in the biomedical field and as X-ray contrast agents for breast cancer screening.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Detecção Precoce de Câncer , Humanos , Prata , Raios X
2.
Chem Mater ; 31(19): 7845-7854, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33005070

RESUMO

Significant effort has been focused on developing renally-clearable nanoparticle agents since efficient renal clearance is important for eventual clinical translation. Silver sulfide nanoparticles (Ag2S-NP) have recently been identified as contrast agents for dual energy mammography, computed tomography (CT) and fluorescence imaging and probes for drug delivery and photothermal therapy with good biocompatibility. However, most Ag2S-NP reported to date are not renally excretable and are observed in vivo to accumulate and remain in the reticuloendothelial system (RES) organs, i.e. liver and spleen, for a long time, which could negatively impact their likelihood for translation. Herein, we present renally-clearable, 3.1 nm Ag2S-NP with 85% of the injected dose (ID) being excreted within 24 hours of intravenous injection, which is amongst the best clearance of similarly sized nanoparticles reported thus far (mostly between 20-75% of ID). The urinary excretion and low RES accumulation of these nanoparticles in mice were indicated by in vivo CT imaging and biodistribution analysis. In summary, these ultrasmall Ag2S-NP can be effectively eliminated via urine and have high translational potential for various biomedical applications.

3.
Nanoscale ; 10(36): 17236-17248, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30191237

RESUMO

Conventional X-ray mammography has low diagnostic sensitivity for women with dense breasts. As a result, alternative contrast-enhanced screening tools such as dual energy mammography (DEM), computed tomography (CT), magnetic resonance imaging (MRI), and near-infrared fluorescence (NIRF) imaging are being used or investigated for these women. However, currently available contrast agents are non-ideal, have safety issues, and each imaging technique requires a different contrast agent. We therefore sought to develop a multimodal contrast agent that is functional for each breast imaging modality to simplify the diagnosis process and address the issues of existing contrast agents. Herein, we present a novel "all-in-one" nanoparticle (AION) multimodal imaging probe that has potent DEM, CT, MRI, and NIRF contrast properties and improved biocompatibility. AION were formed by co-encapsulation of a near-infrared fluorophore (DiR), silver sulfide nanoparticles (Ag2S-NP), and iron oxide nanoparticles (IO-NP) in PEGylated micelles. AION showed negligible cytotoxicity, which was in agreement with its minimal silver ion release profiles. AION generated strong contrast with all imaging modalities as demonstrated in phantom imaging. AION allowed in vivo tumor imaging as evidenced by the increase in contrast after injection. This study indicates the potential of AION as an effective multimodal contrast agent for breast cancer diagnosis with a range of imaging methods.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/química , Nanopartículas/química , Animais , Linhagem Celular , Detecção Precoce de Câncer , Feminino , Compostos Férricos , Células Hep G2 , Humanos , Imageamento por Ressonância Magnética , Mamografia , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Imagens de Fantasmas , Compostos de Prata , Tomografia Computadorizada por Raios X
4.
Nanoscale ; 8(28): 13740-54, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412458

RESUMO

Earlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection. However, the development of contrast agents for this technique is in its infancy. We herein report gold-silver alloy nanoparticles (GSAN) that have potent DEM contrast properties and improved biocompatibility. GSAN formulations containing a range of gold : silver ratios and capped with m-PEG were synthesized and characterized using various analytical methods. DEM and computed tomography (CT) phantom imaging showed that GSAN produced robust contrast that was comparable to silver alone. Cell viability, reactive oxygen species generation and DNA damage results revealed that the formulations with 30% or higher gold content are cytocompatible to Hep G2 and J774A.1 cells. In vivo imaging was performed in mice with and without breast tumors. The results showed that GSAN produce strong DEM and CT contrast and accumulated in tumors. Furthermore, both in vivo imaging and ex vivo analysis indicated the excretion of GSAN via both urine and feces. In summary, GSAN produce strong DEM and CT contrast, and has potential for both blood pool imaging and for breast cancer screening.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Mamografia , Nanopartículas Metálicas , Tomografia Computadorizada por Raios X , Ligas , Animais , Meios de Contraste , Ouro , Células Hep G2 , Humanos , Camundongos , Prata
5.
Eur Radiol ; 26(9): 3301-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26910906

RESUMO

OBJECTIVE: Dual-energy (DE) mammography has recently entered the clinic. Previous theoretical and phantom studies demonstrated that silver provides greater contrast than iodine for this technique. Our objective was to characterize and evaluate in vivo a prototype silver contrast agent ultimately intended for DE mammography. METHODS: The prototype silver contrast agent was synthesized using a three-step process: synthesis of a silver core, silica encapsulation and PEG coating. The nanoparticles were then injected into mice to determine their accumulation in various organs, blood half-life and dual-energy contrast. All animal procedures were approved by the institutional animal care and use committee. RESULTS: The final diameter of the nanoparticles was measured to be 102 (±9) nm. The particles were removed from the vascular circulation with a half-life of 15 min, and accumulated in macrophage-rich organs such as the liver, spleen and lymph nodes. Dual-energy subtraction techniques increased the signal difference-to-noise ratio of the particles by as much as a factor of 15.2 compared to the single-energy images. These nanoparticles produced no adverse effects in mice. CONCLUSION: Silver nanoparticles are an effective contrast agent for dual-energy x-ray imaging. With further design improvements, silver nanoparticles may prove valuable in breast cancer screening and diagnosis. KEY POINTS: • Silver has potential as a contrast agent for DE mammography. • Silica-coated silver nanoparticles are biocompatible and suited for in vivo use. • Silver nanoparticles produce strong contrast in vivo using DE mammography imaging systems.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/química , Mamografia/métodos , Nanopartículas/química , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Feminino , Humanos , Injeções Intraperitoneais , Injeções Intravenosas , Injeções Subcutâneas , Camundongos , Nanopartículas/administração & dosagem , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Razão Sinal-Ruído , Dióxido de Silício , Prata , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...