Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Cancer ; 74(3): 978-995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085886

RESUMO

Clinical efficacy of chemotherapy is often compromised by diabetogenic glucose on colorectal cancer (CRC). High glucose has been shown to diminish the cytotoxicity of anticancer drugs. The issue can potentially be addressed with natural products. Recently, we revealed that Ganoderma neo-japonicum exhibits inhibitory activities against human colonic carcinoma cells. In this study, the impacts of hexane fraction (Hex, sterol-enriched) and chloroform fraction (Chl, terpenoid-enriched) were further elucidated. The cellular responses, including oxidative stress, cell cycle, and apoptosis were compared between the presence of normal glucose (NG, 5.5 mM) and high glucose (HG, 25 mM). HG promoted cell viability with concomitant elevation of GSH level. Both Hex and Chl fractions stimulated NO production, in addition, induced cell cycle arrest. The apoptotic effect of Hex fraction was glucose-dependent, but Chl fraction triggered apoptosis with an equivalent extent in NG and HG conditions. Overall, the active fractions from G. neo-japonicum show therapeutic potential in managing hyperglycemia-associated CRC.


Assuntos
Agaricales , Ganoderma , Neoplasias , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Estresse Oxidativo
2.
Biotechnol Appl Biochem ; 68(4): 902-917, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32856730

RESUMO

Ganoderma neo-japonicum is a well-known medicinal mushroom in Asian countries. However, scientific validations on its curative activities are confined to cirrhosis and diabetes. In this study, the anticancer properties of G. neo-japonicum were evaluated using cellular and computational models. The ethanolic extract (EtOH) with a promising inhibitory effect was fractionated into four different fractions: hexane (Hex), chloroform (Chl), butanol (Btn), and aqueous (Aq). The active fractions were then subjected to cell apoptosis assessment and phytochemical profiling. Molecular docking was conducted to elucidate the affinity of selected constituents towards antiapoptotic Bcl-2 protein. The butanol fraction showed the highest antioxidant activities as well as total phenolic content. Both hexane and chloroform fractions exerted a potent cytotoxic effect on colonic carcinoma cells through the induction of apoptosis. Phytochemical analysis revealed that the chloroform fraction is terpenoid enriched whereas the hexane fraction comprises predominantly sterol constituents. Stellasterol and 1,25-dihydroxyvitamin D3 3-glycoside were demonstrated to have a high affinity towards Bcl-2 protein. Overall, G. neo-japonicum can be considered as a compelling therapeutic candidate for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias do Colo , Misturas Complexas , Simulação por Computador , Ganoderma/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HT29 , Humanos
3.
Sci Prog ; 103(1): 36850419886448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31795844

RESUMO

Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5-20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.


Assuntos
Neoplasias do Colo , Fluoruracila , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Glucose/farmacologia , Glucose/uso terapêutico , Glutationa/farmacologia , Glutationa/uso terapêutico , Humanos , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico
4.
EXCLI J ; 17: 186-199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743857

RESUMO

Colorectal cancer (CRC) is the third most leading cause of morbidity and mortality throughout the world. 5-fluorouracil (5-FU), which is often administrated to disrupt carcinogenesis, was found to elevate blood glucose level among CRC patients. Thus, this study was conducted to evaluate the influence of rosiglitazone on antiproliferative effect of 5-FU using cellular model. Two human colonic carcinoma cell lines (HCT 116 and HT 29) were cultured in the presence of 5-FU, rosiglitazone or in combination under normal and high glucose concentration. The drug cytotoxicity was evaluated using the MTT assay whereas the assessment of cell cycle was carried out using the flow cytometry technique. Combination index (CI) method was used to determine the drug interaction between rosiglitazone and 5-FU. High glucose diminished the cytotoxic effect of 5-FU but at a high drug dosage, this effect could be overcome. Cell cycle analysis demonstrated that 5-FU and rosiglitazone caused G1-phase arrest and S-phase arrest, respectively. CI values indicated that rosiglitazone exerted synergistic effect on 5-FU regardless of glucose levels. This study is the first to demonstrate the influence of rosiglitazone on cytotoxicity of 5-FU under normal or high glucose level. Rosiglitazone may be a promising drug for enhancing the efficacy of 5-FU in the treatment of CRC associated with hyperglycemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...