Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7863, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251592

RESUMO

Regulatory T cells (Tregs) are crucial immune cells for tissue repair and regeneration. However, their potential as a cell-based regenerative therapy is not yet fully understood. Here, we show that local delivery of exogenous Tregs into injured mouse bone, muscle, and skin greatly enhances tissue healing. Mechanistically, exogenous Tregs rapidly adopt an injury-specific phenotype in response to the damaged tissue microenvironment, upregulating genes involved in immunomodulation and tissue healing. We demonstrate that exogenous Tregs exert their regenerative effect by directly and indirectly modulating monocytes/macrophages (Mo/MΦ) in injured tissues, promoting their switch to an anti-inflammatory and pro-healing state via factors such as interleukin (IL)-10. Validating the key role of IL-10 in exogenous Treg-mediated repair and regeneration, the pro-healing capacity of these cells is lost when Il10 is knocked out. Additionally, exogenous Tregs reduce neutrophil and cytotoxic T cell accumulation and IFN-γ production in damaged tissues, further dampening the pro-inflammatory Mo/MΦ phenotype. Highlighting the potential of this approach, we demonstrate that allogeneic and human Tregs also promote tissue healing. Together, this study establishes exogenous Tregs as a possible universal cell-based therapy for regenerative medicine and provides key mechanistic insights that could be harnessed to develop immune cell-based therapies to enhance tissue healing.


Assuntos
Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Cicatrização , Animais , Linfócitos T Reguladores/imunologia , Cicatrização/imunologia , Interleucina-10/metabolismo , Interleucina-10/genética , Humanos , Camundongos , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Pele/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino
2.
Stem Cells Transl Med ; 7(9): 628-635, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30078207

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that mainly affects premature babies who require ventilator support. The pathogenesis of BPD is complex but includes vascular maldevelopment, alveolarization arrest, and lung inflammation. There is no cure for BPD. Clinical care is limited to supportive respiratory measures. A population of stem-like cells derived from placental membranes, human amnion epithelial cells (hAECs), has shown therapeutic promise in preclinical models of BPD. With a view to future efficacy trials, we undertook a first-in-human clinical trial of hAECs in babies with BPD to assess the safety of these cells. In a single-center, open-label phase I trial, we administered allogeneic hAECs (1 × 106 per kilogram bodyweight) by intravenous infusion to six premature babies with BPD. The primary outcomes of the study were focused on safety, including local site reaction, anaphylaxis, infection, features of rejection, or tumor formation. Outcomes to discharge from neonatal unit were studied. The hAECs were well tolerated. In the first baby, there was transient cardiorespiratory compromise during cell administration consistent with a pulmonary embolic event. Following changes to cell administration methods, including introduction of an inline filter, and reducing the cell concentration and the rate of cell infusion, no such events were observed in the subsequent five babies. We did not see evidence of any other adverse events related to cell administration. Allogeneic hAECs can be safely infused into babies with established BPD. Future randomized clinical trials to assess efficacy in this patient population are justified. Stem Cells Translational Medicine 2018;7:628-635.


Assuntos
Âmnio/citologia , Displasia Broncopulmonar/terapia , Células Epiteliais/transplante , Pressão Sanguínea , Proteína C-Reativa/análise , Células Epiteliais/citologia , Feminino , Idade Gestacional , Frequência Cardíaca , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Transplante Homólogo/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA