Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054650

RESUMO

We report herein chemical and electrochemical ammonia oxidation (AO) catalyzed by a Ru complex, [RuII(H2L)(pic)2]2+ [1, H2L = 6,6'-di(1H-pyrazol-3-yl)-2,2'-bipyridine, pic = 4-picoline], where H2L is a tetradentate ligand with a bipyridyl unit connected to two pyrazoles. 1 functions as an efficient electrocatalyst for the oxidation of NH3 to N2, with a low overpotential of 0.51 V vs Fc+/0 and a Faradaic efficiency of 96%. 1 also undergoes catalytic chemical AO using (4-BrPh)3N•+ as an oxidant, with a turnover number for N2 reaching 41. A novel binuclear complex, [RuIII(L)(pic)2(N2)RuIII(L)(pic)2]4+ (2), was isolated and structurally characterized in the catalytic chemical AO by 1. Complex 2 possesses a zigzag dianionic µ-hexazene unit where the N2 derived from ammonia oxidation is bonded to the pyrazoles, with an NN2-NN2 bond length of 1.3091(70) Å. 2 readily releases N2 upon treating with NH3. Based on experimental and DFT studies, in chemical AO the formation of an N-N bond is proposed to occur via bimolecular coupling of a ruthenium pyrazole imido intermediate to give 2; while in electrochemical AO the N-N bond is formed by nucleophilic attack of NH3 on the intermediate.

2.
Chem Commun (Camb) ; 60(3): 312-315, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063010

RESUMO

The use of metal-acylperoxo complexes as oxidants has been little explored. Herein we report the synthesis and characterization of the first seven-coordinate Ru-acylperoxo complex, [RuIV(bdpm)(pic)2(mCPBA)]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline; HmCPBA = m-chloroperbenzoic acid). This complex is a highly reactive oxidant for C-H bond activation and O-atom transfer reactions.

4.
J Am Chem Soc ; 145(46): 25195-25202, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947126

RESUMO

Visible-light-driven reduction of CO2 to both CO and formate (HCOO-) was achieved in acetonitrile solutions using a homobimetallic Cu bisquaterpyridine complex. In the presence of a weak acid (water) as coreactant, the reaction rate was enhanced, and a total of ca. 766 TON (turnover number) was reached for the CO2 reduction, with 60% selectivity for formate and 28% selectivity for CO, using Ru(phen)32+ as a sensitizer and amines as sacrificial electron donors. Mechanistic studies revealed that with the help of cooperativity between two Cu centers, a bridging hydride is generated in the presence of a proton source (water) and further reacts with CO2 to give HCOO-. A second product, CO, was also produced in a parallel competitive pathway upon direct coordination of CO2 to the reduced complex. Mechanistic studies further allowed comparison of the observed reactivity to the monometallic Cu quaterpyridine complex, which only produced CO, and to the related homobimetallic Co bisquaterpyridine complex, that has been previously shown to generate formate following a mechanism not involving the formation of an intermediate hydride species.

5.
Dalton Trans ; 52(43): 16032-16042, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850402

RESUMO

The reaction of a triazole ligand, 2-(1H-1,2,3-triazol-4-yl)pyridine (L1), with 2-bromopyridine afforded three new ligands, 2,2'-(1H-1,2,3-triazole-1,4-diyl)dipyridine (L2), 2,2'-(2H-1,2,3-triazole-2,4-diyl)dipyridine (L3) and 2,2'-(1H-1,2,3-triazole-1,5-diyl)dipyridine (L4). A series of luminescent mononuclear copper(I) complexes of these ligands [Cu(Ln)(P^P)](ClO4) [n = 1, P^P = (PPh3)2 (1); n = 1, P^P = POP (2); n = 2, P^P = (PPh3)2 (3); n = 2, P^P = POP (4); n = 3, P^P = (PPh3)2 (5); n = 3, P^P = POP (6); n = 4, P^P = (PPh3)2 (9); n = 4, P^P = POP (10)] have been obtained from the reaction of Ln with [Cu(MeCN)4]ClO4 in the presence of PPh3 and POP. L3 was also found to form dinuclear compounds [Cu2(L3)(PPh3)4](ClO4)2 (7) and [Cu2(L3)(POP)2](ClO4)2 (8). All of the Cu(I) compounds have been characterized by IR, UV/vis, CV, 1H NMR, and 31P{1H} NMR. The molecular structures of 1-3, 5, and 7 have been further determined by X-ray crystallography. In CH2Cl2 solutions, these Cu(I) complexes exhibit tunable green to orange emissions (563-621 nm) upon excitation at λex = 380 nm. In the solid state, these complexes show intense emissions and it is interesting to note that 1 and 3 are blue-light emitters. Density functional theory (DFT) calculations revealed that the lowest energy electronic transition associated with these complexes predominantly originates from metal-to-ligand charge transfer transitions (MLCT).

6.
Inorg Chem ; 62(20): 7772-7778, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37146252

RESUMO

Seven-coordinate (CN7) ruthenium-oxo species have attracted much attention as highly reactive intermediates in both organic and water oxidation. Apart from metal-oxo, other metal-oxidant adducts, such as metal-iodosylarenes, have also recently emerged as active oxidants. We reported herein the first example of a CN7 Ru-iodosylbenzene complex, [RuIV(bdpm)(pic)2(O)I(Cl)Ph]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline). The X-ray crystal structure of this complex shows that it adopts a distorted pentagonal bipyramidal geometry with Ru-O(I) and O-I distances of 2.0451(39) and 1.9946(40) Å, respectively. This complex is highly reactive, and it readily undergoes O-atom transfer (OAT) and C-H bond activation reactions with various organic substrates. This work should provide insights for the development of new highly reactive oxidizing agents based on CN7 geometry.

7.
J Am Chem Soc ; 145(16): 9129-9135, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053567

RESUMO

Although alcohols are readily oxidized by a variety of oxidants, their oxidation by metal nitrido complexes is yet to be studied. We report herein visible-light-induced oxidation of primary and secondary alcohols to carbonyl compounds by a strongly luminescent osmium(VI) nitrido complex (OsN). The proposed mechanism involves initial rate-limiting hydrogen-atom transfer (HAT) from the α-carbon of the alcohol to OsN*. Attempts to develop catalytic oxidation of alcohols by OsN* using PhIO as the terminal oxidant resulted in the formation of novel osmium(IV) iminato complexes in which the nitrido ligand is bonded to a δ-carbon of the alcohol. Experimental and theoretical studies suggest that OsN* is reductively quenched by PhIO to generate PhIO+, which is a highly active oxidant that readily undergoes α- and δ-C-H activation of alcohols.

8.
Inorg Chem ; 62(4): 1447-1454, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36633522

RESUMO

The reactivity of electrophilic OsVI and RuVI nitrides toward various aliphatic and aromatic amines have been previously reported; these reactions all go through an initial nucleophilic addition of the amine nitrogen to MVI≡N (M = Os, Ru) to generate a MIV hydrazido species. Herein, we report that the excited state of a luminescent osmium(VI) nitrido complex, [OsVI(N)(L)(CN)3]- (OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole), undergoes unprecedented ring nitrogenation of aromatic amines. Visible-light irradiation of OsN generates OsN*, which predominantly attacks the aromatic ring of 2,6-dimethylaniline (Me2PhNH2) to give an Os(II) benzoquinone diimine compound (PPh4)[OsII(L)(CN)3(p-NH═Me2Ph═NH2)] [(PPh4)2] in 60% yield, while nucleophilic addition of the amine N to OsN* also occurs to give the osmium(II) diazonium compound (PPh4)[OsII(L)(CN)3(N = N-Me2Ph)] [(PPh4)1] as a minor product (10% yield). On the other hand, OsN* undergoes exclusive ring nitrogenation of diphenylamine, indole, and carbazole to give the corresponding osmium(II) benzoquinone diimines. All products have been characterized by various spectroscopic techniques and by X-ray crystallography. The reaction between OsN* and Ar2N is proposed to proceed via an initial 1e- transfer (ET) followed by proton transfer (PT) to generate OsVNH and Ar2N• intermediates, which then further combine to give the product. The benzoquinone diimine ligands are susceptible to oxidation. Oxidation of 2 with H2O2 at ambient conditions affords [OsIV(L)(CN)3(N═PhMe2(O)═O)]-, which bears the previously unknown (epoxy)benzoquinone iminato ligand.

9.
Chem Sci ; 13(39): 11600-11606, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320399

RESUMO

The activation of metal-oxo species with Lewis acids is of current interest. In this work, the effects of a weak Brønsted acid such as CH3CO2H and a weak Lewis acid such as Ca2+ on C-H bond activation by KMnO4 have been investigated. Although MnO4 - is rather non-basic (pK a of MnO3(OH) = -2.25), it can be activated by AcOH or Ca2+ to oxidize cyclohexane at room temperature to give cyclohexanone as the major product. A synergistic effect occurs when both AcOH and Ca2+ are present; the relative rates for the oxidation of cyclohexane by MnO4 -/AcOH, MnO4 -/Ca2+ and MnO4 -/AcOH/Ca2+ are 1 : 73 : 198. DFT calculations show that in the active intermediate of MnO4 -/AcOH/Ca2+, MnO4 - is H-bonded to 3 AcOH molecules, while Ca2+ is bonded to 3 AcOH molecules as well as to an oxo ligand of MnO4 -. Our results also suggest that these synergistic activating effects of a weak Brønsted acid and a weak Lewis acid should be applicable to a variety of metal-oxo species.

10.
Inorg Chem ; 61(27): 10567-10574, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748889

RESUMO

The oxidation of hypophosphorous acid (H3PO2) by a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), has been studied in aqueous acidic solutions at pH 0-2.50. The reaction has the following stoichiometry: 2[(L)RuVI(N)(OH2)]+ + 3H3PO2 + H2O → 2[(L)RuIII(NH2P(OH)2)(OH2)]+ + H3PO3. The pseudo-first-order rate constant, kobs, depends linearly on [H3PO2], and the second-order rate constant k2 depends on [H+] according to the relationship k2 = k[H+]/([H+] + Ka), where k is the rate constant for the oxidation of H3PO2 molecule and Ka is the dissociation constant of H3PO2. At 298.0 K and I = 1.0 M, k = (2.04 ± 0.19) × 10-2 M-1 s-1 and Ka = (6.38 ± 0.63) × 10-2 M. A kinetic isotope effect (KIE) of 2.9 ± 0.1 was obtained when kinetic studies were carried out with D3PO2 at pH 1.16, suggesting P-H bond cleavage in the rate-determining step. On the other hand, when the kinetics were determined in D2O, an inverse KIE of 0.21 ± 0.03 (H3PO2 in H2O vs H3PO2 in D2O) was found. On the basis of experimental results and DFT calculations, the proposed mechanism involves an acid-catalyzed tautomerization of H2P(O)(OH) to HP(OH)2; the latter molecule is the reacting species which reacts with RuVIN via a proton-coupled N-atom transfer pathway.

11.
Chem Commun (Camb) ; 58(57): 7988-7991, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35762347

RESUMO

The photoreactions of a luminescent osmium(VI) nitrido complex, [OsVI(N)(L)(CN)3]- (OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole), with catechol (H2Cat) and hydroquinone (H2Q) lead to the cleavage of strong C-OH bonds (ca. 120 kcal mol-1) of the dihydroxybenzenes with concomitant conversion of the coordinated cyanide to carbon monoxide.

12.
J Am Chem Soc ; 144(17): 7588-7593, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442033

RESUMO

As a strategy to design stable but highly reactive metal nitrido species, we have synthesized a manganese(V) nitrido complex bearing a bulky corrole ligand, [MnV(N)(TTPPC)]- (1, TTPPC is the trianion of 5,10,15-Tris(2,4,6-triphenylphenyl)corrole). Complex 1 is readily oxidized by 1 equiv of Cp2Fe+ to give the neutral complex 2, which can be further oxidized by 1 equiv of [(p-Br-C6H4)3N•+][B(C6F5)4] to afford the cationic complex 3. All three complexes are stable in the solid state and in CH2Cl2 solution, and their molecular structures have been determined by X-ray crystallography. Spectroscopic and theoretical studies indicate that complexes 2 and 3 are best formulated as Mn(V) nitrido π-cation corrole [MnV(N)(TTPPC+•)] and Mn(V) nitrido π-dication corrole [MnV(N)(TTPPC2+)]+, respectively. Complex 3 is the most reactive N atom transfer reagent among isolated nitrido complexes; it reacts with PPh3 and styrene with second-order rate constants of 2.12 × 105 and 1.95 × 10-2 M-1 s-1, respectively, which are >107 faster than that of 2.


Assuntos
Manganês , Porfirinas , Elétrons , Íons , Ligantes , Manganês/química , Porfirinas/química
13.
Dalton Trans ; 51(14): 5404-5408, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315483

RESUMO

We report the first example of oxidative cleavage of the strong C-N bonds of primary amines by a ruthenium(VI) nitrido complex. The driving force for this very fast C-N cleavage reaction comes from the formation of stable NN after the initial coupling of the amine N and the nitrido ligand.

14.
Proc Natl Acad Sci U S A ; 119(12): e2116543119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298336

RESUMO

Here, we report the use of an amphiphilic Pt(II) complex, K[Pt{(O3SCH2CH2CH2)2bzimpy}Cl] (PtB), as a model to elucidate the key role of Pt···Pt interactions in directing self-assembly by combining temperature-dependent ultraviolet-visible (UV-Vis) spectroscopy, stopped-flow kinetic experiments, quantum mechanics (QM) calculations, and molecular dynamics (MD) simulations. Interestingly, we found that the self-assembly mechanism of PtB in aqueous solution follows a nucleation-free isodesmic model, as revealed by the temperature-dependent UV-Vis experiments. In contrast, a cooperative growth is found for the self-assembly of PtB in acetone­water (7:1, vol/vol) solution, which is further verified by the stopped-flow experiments, which clearly indicates the existence of a nucleation phase in the acetone­water (7:1, vol/vol) solution. To reveal the underlying reasons and driving forces for these self-assembly processes, we performed QM calculations and show that the Pt···Pt interactions arising from the interaction between the pz and dz2 orbitals play a crucial role in determining the formation of ordered self-assembled structures. In subsequent oligomer MD simulations, we demonstrate that this directional Pt···Pt interaction can indeed facilitate the formation of linear structures packed in a helix-like fashion. Our results suggest that the self-assembly of PtB in acetone­water (7:1, vol/vol) solution is predominantly driven by the directional noncovalent Pt···Pt interaction, leading to the cooperative growth and the formation of fibrous nanostructures. On the contrary, the self-assembly in aqueous solution forms spherical nanostructures of PtB, which is primarily due to the predominant contribution from the less directional hydrophobic interactions over the directional Pt···Pt and π−π interactions that result in an isodesmic growth.

15.
Angew Chem Int Ed Engl ; 61(11): e202116832, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986281

RESUMO

Efficient and selective photocatalytic CO2 reduction was obtained within a hybrid system that is formed in situ via a Schiff base condensation between a molecular iron quaterpyridine complex bearing an aldehyde function and carbon nitride. Irradiation (blue LED) of an CH3 CN solution containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), triethylamine (TEA), Feqpy-BA (qpy-BA=4-([2,2':6',2'':6'',2'''-quaterpyridin]-4-yl)benzaldehyde) and C3 N4 resulted in CO evolution with a turnover number of 2554 and 95 % selectivity. This hybrid catalytic system unlocks covalent linkage of molecular catalysts with semiconductor photosensitizers via Schiff base reaction for high-efficiency photocatalytic reduction of CO2 , opening a pathway for diverse photocatalysis.

16.
Sci Total Environ ; 804: 150147, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509840

RESUMO

Microbial conversion of methane to electricity, fuels, and liquid chemicals has attracted much attention. However, due to the low solubility of methane, it is not considered a suitable substrate for microbial fuel cells (MFCs). In this study, a conductive fiber membrane (CFM) module was constructed as the bioanode of methane-driven MFCs, directly delivering methane. After biofilm formation on the CFM surface, a steady voltage output of 0.6 to 0.7 V was recorded, and the CFM-MFCs obtained a maximum power density of 64 ± 2 mW/m2. Moreover, methane oxidation produced a high concentration of intermediate acetate (up to 7.1 mM). High-throughput 16S rRNA gene sequencing suggests that the microbial community was significantly changed after electricity generation. Methane-related archaea formed a symbiotic consortium with characterized electroactive bacteria and fermentative bacteria, suggesting a combination of three types of microorganisms for methane conversion into acetate and electricity.


Assuntos
Fontes de Energia Bioelétrica , Acetatos , Eletricidade , Eletrodos , Metano , RNA Ribossômico 16S/genética
17.
Chem Sci ; 12(43): 14494-14498, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881000

RESUMO

N-Dealkylation of amines by metal oxo intermediates (M[double bond, length as m-dash]O) is related to drug detoxification and DNA repair in biological systems. In this study, we report the first example of N-dealkylation of various alkylamines by a luminescent osmium(vi) nitrido complex induced by visible light.

18.
Dalton Trans ; 50(42): 15327-15335, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636819

RESUMO

The first-row transition metal compounds, [MII(L1)2](ClO4)2 (M = Ni (1); Co (2)), have been prepared by treatment of a neutral tetradentate ligand (L1 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide) with metal perchlorate salts in MeOH. Both compounds have been structurally characterized by X-ray crystallography and it was found that the coordination numbers are 6 and 7, respectively. The reaction of 6,6'-bis(2-tbutyl-tetrazol-5-yl)-2,2'-bipyridine (L2) with hydrated FeII(ClO4)2 afforded a 8-coordinate Fe(II) compound, [FeII(L2)2](ClO4)2 (3); however its reaction with hydrated CoII(ClO4)2 resulted in 6-coordinate [CoII(L2)2](ClO4)2. It is interesting to observe field-induced slow magnetic relaxation in the 7-coordinate Co(II) compound 2 and 8-coordinate Fe(II) compound 3, which further supports the validity of designing high coordination number compounds as single-molecule magnets. Direct current magnetic studies demonstrate that 2 has a very large positive D value (56.2 cm-1) and a small E value (0.66 cm-1), indicating easy plane magnetic anisotropy. Consistent with the larger D value, an effective spin-reversal barrier of Ueff = 100 K (71.4 cm-1) is obtained, which is the highest value reported for 7-coordinate Co(II) complexes with a pentagonal bipyramidal geometry. In contrast, 8-coordinate Fe(II) compound 3 exhibits uniaxial magnetic anisotropy.

19.
J Am Chem Soc ; 143(38): 15863-15872, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34498856

RESUMO

Manganese complexes in +6 oxidation state are rare. Although a number of Mn(VI) nitrido complexes have been generated in solution via one-electron oxidation of the corresponding Mn(V) nitrido species, they are too unstable to isolate. Herein we report the isolation and the X-ray structure of a Mn(VI) nitrido complex, [MnVI(N)(TAML)]- (2), which was obtained by one-electron oxidation of [MnV(N)(TAML)]2- (1). 2 undergoes N atom transfer to PPh3 and styrenes to give Ph3P═NH and aziridines, respectively. A Hammett study for various p-substituted styrenes gives a V-shaped plot; this is rationalized by the ability of 2 to function as either an electrophile or a nucleophile. 2 also undergoes hydride transfer reactions with NADH analogues, such as 10-methyl-9,10-dihydroacridine (AcrH2) and 1-benzyl-1,4-dihydronicotinamide (BNAH). A kinetic isotope effect of 7.3 was obtained when kinetic studies were carried out with AcrH2 and AcrD2. The reaction of 2 with NADH analogues results in the formation of [MnV(N)(TAML-H+)]- (3), which was characterized by ESI/MS, IR spectroscopy, and X-ray crystallography. These results indicate that this reaction occurs via an initial "separated CPET" (separated concerted proton-electron transfer) mechanism; that is, there is a concerted transfer of 1 e- + 1 H+ from AcrH2 (or BNAH) to 2, in which the electron is transferred to the MnVI center, while the proton is transferred to a carbonyl oxygen of TAML rather than to the nitrido ligand.

20.
J Am Chem Soc ; 143(36): 14445-14450, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34477359

RESUMO

Room temperature aerobic oxidation of hydrocarbons is highly desirable and remains a great challenge. Here we report a series of highly electrophilic cobalt(III) alkylperoxo complexes, CoIII(qpy)OOR supported by a planar tetradentate quaterpyridine ligand that can directly abstract H atoms from hydrocarbons (R'H) at ambient conditions (CoIII(qpy)OOR + R'H → CoII(qpy) + R'• + ROOH). The resulting alkyl radical (R'•) reacts rapidly with O2 to form alkylperoxy radical (R'OO•), which is efficiently scavenged by CoII(qpy) to give CoIII(qpy)OOR' (CoII(qpy) + R'OO• → CoIII(qpy)OOR'). This unique reactivity enables CoIII(qpy)OOR to function as efficient catalysts for aerobic peroxidation of hydrocarbons (R'H + O2 → R'OOH) under 1 atm air and at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...