Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Hear ; 192015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26721928

RESUMO

Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs' activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology.


Assuntos
Implantes Cocleares , Nervo Coclear/metabolismo , Estimulação Elétrica/métodos , Canais de Potássio/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Estimulação Acústica/métodos , Potenciais de Ação , Animais , Células Cultivadas , Nervo Coclear/citologia , Eletrofisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Gânglio Espiral da Cóclea/citologia , Reino Unido , Nervo Vestibulococlear/citologia , Nervo Vestibulococlear/fisiologia
2.
Cochlear Implants Int ; 16(1): 32-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24855994

RESUMO

Determining the electrical stimulation levels is often a difficult and time-consuming task because they are normally determined behaviorally - a particular challenge when dealing with pediatric patients. The evoked stapedius reflex threshold and the evoked compound action potential have already been shown to provide reasonable estimates of the C- and T-levels, although these estimates tend to overestimate the C- and T-levels. The aim of this study was to investigate whether the evoked auditory brainstem response (eABR) can also be used to reliably estimate a patient's C- and T-levels. The correlation between eABR detection thresholds and behaviorally measured perceptual thresholds was statistically significant (r = 0.71; P < 0.001). In addition, eABR Wave-V amplitude increased with increasing stimulation level for the three loudness levels tested. These results show that the eABR detection threshold can be used to estimate a patient's T-levels. In addition, Wave-V amplitude could provide a method for estimating C-levels in the future. The eABR objective measure may provide a useful cochlear implant fitting method - particularly for pediatric patients.


Assuntos
Limiar Auditivo/fisiologia , Implante Coclear/reabilitação , Implantes Cocleares , Estimulação Elétrica/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais de Ação/fisiologia , Adulto , Implante Coclear/instrumentação , Feminino , Humanos , Percepção Sonora , Masculino , Pessoa de Meia-Idade , Estapédio/fisiologia
3.
PLoS Comput Biol ; 10(8): e1003775, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144440

RESUMO

An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs.


Assuntos
Dendritos/fisiologia , Modelos Neurológicos , Sinapses/fisiologia , Biologia Computacional , Canais Iônicos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
4.
eNeuro ; 1(1)2014.
Artigo em Inglês | MEDLINE | ID: mdl-26464959

RESUMO

Musical notes can be ordered from low to high along a perceptual dimension called "pitch". A characteristic property of these sounds is their periodic waveform, and periodicity generally correlates with pitch. Thus, pitch is often described as the perceptual correlate of the periodicity of the sound's waveform. However, the existence and salience of pitch also depends in a complex way on other factors, in particular harmonic content. For example, periodic sounds made of high-order harmonics tend to have a weaker pitch than those made of low-order harmonics. Here we examine the theoretical proposition that pitch is the perceptual correlate of the regularity structure of the vibration pattern of the basilar membrane, across place and time-a generalization of the traditional view on pitch. While this proposition also attributes pitch to periodic sounds, we show that it predicts differences between resolved and unresolved harmonic complexes and a complex domain of existence of pitch, in agreement with psychophysical experiments. We also present a possible neural mechanism for pitch estimation based on coincidence detection, which does not require long delays, in contrast with standard temporal models of pitch.

5.
Hear Res ; 305: 102-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23603138

RESUMO

A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Neurônios/fisiologia , Reconhecimento Fisiológico de Modelo , Fala , Vocalização Animal , Voz , Estimulação Acústica , Animais , Sinais (Psicologia) , Discriminação Psicológica , Potenciais Evocados Auditivos , Humanos , Modelos Neurológicos , Dinâmica não Linear , Percepção da Fala , Fatores de Tempo
6.
PLoS One ; 7(11): e50539, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209771

RESUMO

Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRF(voc)) and DMR-derived STRFs (STRF(dmr)), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRF(voc) predicted neural responses to vocalizations more accurately than STRF(dmr) predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRF(voc) and STRF(dmr). Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.


Assuntos
Córtex Auditivo/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Percepção Auditiva/fisiologia , Cobaias , Modelos Neurológicos , Neurônios/metabolismo
7.
J Neurophysiol ; 103(3): 1226-37, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042702

RESUMO

We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN.


Assuntos
Núcleo Coclear/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Algoritmos , Animais , Núcleo Coclear/citologia , Interpretação Estatística de Dados , Estimulação Elétrica , Eletrodos Implantados , Eletrofisiologia , Cobaias , Microeletrodos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...