Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999049

RESUMO

Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.


Assuntos
Proteínas Hedgehog , Simulação de Acoplamento Molecular , Piridinas , Pirimidinas , Proteína GLI1 em Dedos de Zinco , Piridinas/farmacologia , Piridinas/química , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Pirimidinas/farmacologia , Pirimidinas/química , Proteínas Hedgehog/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células NIH 3T3 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Eur J Pharm Sci ; 162: 105821, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781856

RESUMO

DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is highly expressed in glioma, an aggressive brain tumor, and has been proposed as a therapeutic target for cancer. In the current study, we have used an optimized and validated time-resolved fluorescence energy transfer (TR-FRET)-based DYRK1A assay for high-throughput screening (HTS) in 384-well format. A small-scale screen of the FDA-approved Prestwick drug collection identified the ß-carboline, harmine, and four related analogs as DYRK1A inhibitors. Hits were confirmed by dose response and in an orthogonal DYRK1A assay. Harmine's potential therapeutic use has been hampered by its off-target activity for monoamine oxidase A (MAO-A) which impacts multiple nervous system targets. Selectivity profiling of harmine and a broader collection of analogs allowed us to map some divergent SAR (structure-activity relationships) for the DYRK1A and MAO-A activities. The panel of harmine analogs had varying activities in vitro in glioblastoma (GBM) cell lines when tested for anti-proliferative effects using a high content imaging assay. In particular, of the identified analogs, harmol was found to have the best selectivity for DYRK1A over MAO-A and, when tested in a glioma tumor xenograft model, harmol demonstrated a better therapeutic window compared to harmine.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Monoaminoxidase , Neoplasias , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Carbolinas , Harmina/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Quinases Dyrk
3.
PLoS One ; 13(10): e0204605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359371

RESUMO

Obesity and insulin resistance are primary risk factors for Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD is generally exhibited by non-progressive simple steatosis. However, a significant subset of patient's progress to nonalcoholic steatohepatitis (NASH) that is defined by the presence of steatosis, inflammation and hepatocyte injury with fibrosis. Unfortunately, there are no approved therapies for NAFLD or NASH and therefore therapeutic approaches are urgently needed. Niclosamide is an U.S. Food and Drug Administration (FDA)-approved anthelmintic drug that mediates its effect by uncoupling oxidative phosphorylation. Niclosamide and its salt forms, Niclosamide Ethanolamine (NEN), and Niclosamide Piperazine (NPP) have shown efficacy in murine models of diet induced obesity characterized by attenuation of the prominent fatty liver disease phenotype and improved glucose metabolism. While the exact mechanism(s) underlying these changes remains unclear, the ability to uncouple oxidative phosphorylation leading to increased energy expenditure and lipid metabolism or attenuation of PKA mediated glucagon signaling in the liver have been proposed. Unfortunately, niclosamide has very poor water solubility, leading to low oral bioavailability. This, in addition to mitochondrial uncoupling activity and potential genotoxicity have reduced enthusiasm for its clinical use. More recently, salt forms of niclosamide, NEN and NPP, have demonstrated improved oral bioavailability while retaining activity. This suggests that development of safer more effective niclosamide derivatives for the treatment of NAFLD and Type 2 Diabetes may be possible. Herein we explored the ability of a series of N-substituted phenylbenzamide derivatives of the niclosamide salicylanilide chemotype to attenuate hepatic steatosis using a novel phenotypic in vitro model of fatty liver and the high fat diet-fed mouse model of diet induced obesity. These studies identified novel compounds with improved pre-clinical properties that attenuate hepatic steatosis in vitro and in vivo. These compounds with improved drug properties may be useful in alleviating symptoms and protection against disease progression in patients with metabolic syndrome and NAFLD.


Assuntos
Fármacos Antiobesidade/farmacologia , Benzamidas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Ratos Sprague-Dawley , Salmonella typhimurium/efeitos dos fármacos
4.
J Antibiot (Tokyo) ; 70(2): 130-135, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27507631

RESUMO

The echinocandins are an important class of antifungal agents. However, instability and, in some cases, lack of solubility have restricted their use to situations in which daily infusions are acceptable. CD101 is a novel echinocandin in development for topical and weekly i.v. administration that exhibits prolonged stability in plasma and aqueous solutions up to 40 °C. After incubation for 44 h in rat, dog, monkey and human plasma at 37 °C, the percent of CD101 remaining (91%, 79%, 94% and 93%, respectively) was consistently greater than that of anidulafungin (7%, 15%, 14% and 7%, respectively). Similarly, after incubation in phosphate-buffered saline at 37 °C, the CD101 remaining (96%) was greater than that of anidulafungin (42%). CD101 exhibited <2% degradation after long-term storage at 40 °C as a lyophilized powder (9 months) and at room temperature in 5% dextrose (15 months), 0.9% saline (12 months) and sterile water (18 months). Degradation was <7% at 40 °C in acetate and lactate buffers (6 to 9 months at pH 4.5-5.5). The chemical stability and solubility of CD101 contribute to dosing, pharmacokinetic, formulation and safety advantages over other echinocandins and should expand utility beyond daily i.v.


Assuntos
Antifúngicos/farmacologia , Equinocandinas/farmacologia , Plasma/química , Animais , Antifúngicos/química , Soluções Tampão , Estabilidade de Medicamentos , Equinocandinas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fosfatos , Pós , Solubilidade , Soluções
5.
Artigo em Inglês | MEDLINE | ID: mdl-27919891

RESUMO

Echinocandins are a first-line therapy for candidemia and invasive candidiasis. They are generally safe with few drug interactions, but the stability and pharmacokinetic properties of currently approved echinocandins are such that each was developed for daily intravenous infusion. We sought to discover a novel echinocandin with properties that would enable more flexible dosing regimens, alternate routes of delivery, and expanded utility. Derivatives of known echinocandin scaffolds were generated, and an iterative process of design and screening led to the discovery of CD101, a novel echinocandin that has since demonstrated improved chemical stability and pharmacokinetics. Here, we report the structure-activity relationships (including preclinical efficacy and pharmacokinetic data) for the series of echinocandin analogs from which CD101 was selected. In a mouse model of disseminated candidiasis, the test compounds displayed clear dose responses and were generally associated with lower fungal burdens than that of anidulafungin. Single-dose pharmacokinetic studies in beagle dogs revealed a wide disparity in the half-lives and volumes of distribution, with one compound (now known as CD101) displaying a half-life that is nearly 5-fold longer than that of anidulafungin (53.1 h versus 11.6 h, respectively). In vitro activity data against panels of Candida spp. and Aspergillus spp. demonstrated that CD101 behaved similarly to approved echinocandins in terms of potency and spectrum of activity, suggesting that the improved efficacy observed in vivo for CD101 is a result of features beyond the antifungal potency inherent to the molecule. Factors that potentially contribute to the improved in vivo efficacy of CD101 are discussed.


Assuntos
Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Equinocandinas/química , Equinocandinas/farmacologia , Relação Estrutura-Atividade , Animais , Antifúngicos/farmacocinética , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Cães , Equinocandinas/farmacocinética , Feminino , Meia-Vida , Masculino , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana
6.
Bioorg Med Chem Lett ; 24(14): 3100-3, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24881566

RESUMO

The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Sulfonamidas/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Insulina/agonistas , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
8.
J Med Chem ; 51(15): 4632-40, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18620382
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...