Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 145(14): 144301, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782533

RESUMO

An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol-1. The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm-1, and a shift of all UV absorption bands to higher energies.

2.
J Phys Chem A ; 111(34): 8330-5, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17685497

RESUMO

Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH(2)=CHCH(3)) and propene-d6 (CD(2)=CDCD(3)) have been investigated, employing gas chromatography, mass spectroscopy, and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and/or secondary radical reactions, occurring subsequent to the photolysis. Theoretical calculations suggest the potential occurrence of an intramolecular dissociation through a mechanism involving vinylidene formation, accompanied by an ethylenic H-migration through the pi-orbitals. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products. The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and -d6 (CH(2)=CHCOCH(3), CD(2)=CDCOCD(3)), alternative precursors for generating methyl and vinyl radicals, are compared with the current results for propene.

4.
J Phys Chem A ; 109(11): 2534-9, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833555

RESUMO

The 193-nm photochemistry of allene (H2C=C=CH2), propyne (H3C-C[triple bond]CH), and 2-butyne (H3C-C[triple bond]C-CH3) has been examined, and the UV spectral region between 220 and 350 nm has been surveyed for UV-absorption detection of transient species generated from the photolysis of these molecules. Time-resolved UV-absorption spectroscopy was used for detection of transient absorption. Gas chromatographic/mass spectroscopic (GC/MS) analysis of the photolyzed samples were employed for identification of the final photodissociation products. An emphasis of the study has been on the examination of possibilities of formation of different C3H3 isomeric radicals, that is, propargyl (H2CCCH) or propynyl (H3CCC), from the 193-nm photolysis of these molecules. Survey of the UV spectral region, following the 193-nm photolysis of dilute mixtures of allene/He resulted in detection of a strong absorption band around 230 nm and a weaker band in the 320-nm region with a relative intensity of about 8:1. The time-resolved absorption traces after the photolysis event show an instantaneous rise, followed by a simple decay. The spectral features, observed in this work, following 193-nm photolysis of allene are in good agreement with the previously reported spectrum of H2CCCH radical in the 240- and 320-nm regions and are believed to originate primarily from propargyl radicals. In comparison, the spectra obtained from the 193-nm photolysis of dilute mixtures of HCCCH3/He and CH3CCCH3/He were nearly identical, consisting of two relatively broad bands centered at about 240- and 320-nm regions with a relative intensity of about 2:1, respectively. In addition, the time-resolved absorption traces after photolysis of propyne and 2-butyne samples, both in the 240 and 320 nm regions, indicated an instant rise followed by an additional slower absorption rise. The distinct differences between the results of allene with those of propyne and 2-butyne suggest the observed absorption features following 193-nm photolysis of these molecules are likely to be composite with contributions from a number of transient species other than propargyl radicals. Propyne and 2-butyne are structurally similar. The methyl (CH3) and propynyl (CH3C[triple bond]C) radicals are likely to be among the photodissociation products of 2-butyne, and similarly, propynyl is likely to be a photodissociation product of propyne. GC/MS product analysis of photolyzed 2-butyne/He mixtures indicates the formation of C2H6 (formed from the combination of CH3 radicals), and a number of C6H6 and C4H6 isomers formed from self- and cross reactions of C3H3 and CH3 radicals, including 1,5-hexadiyne and 2,4-hexadyine, that are potential products of combination reactions of propargyl as well as propynyl radicals.

6.
J Res Natl Bur Stand A Phys Chem ; 80A(2): 143-166, 1976.
Artigo em Inglês | MEDLINE | ID: mdl-32196290

RESUMO

The extinction coefficient of NO2 has been measured in the spectral range 185 to 410 nm as a function of temperature between 235 and 298 K. In order to correct for the effect of the dimer absorption, the extinction coefficient of N2O4 has also been measured. The effect of a decrease in temperature upon the NO2 absorption is a reduction in the extinction coefficient of approximately 10 percent in the range 320 to 380 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...