Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2307: 1-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847979

RESUMO

A mutant excision+/integration- piggyBac transposase can be used to seamlessly excise a chromosomally integrated, piggyBac-compatible selection marker cassette from the Yarrowia lipolytica genome. This piggyBac transposase-based genome engineering process allows for both positive selection of targeted homologous recombination events and scarless or footprint-free genome modifications after precise marker recovery. Residual non-native sequences left in the genome after marker excision can be minimized (0-4 nucleotides) or customized (user-defined except for a TTAA tetranucleotide). Both of these options reduce the risk of unintended homologous recombination events in strains with multiple genomic edits. A suite of dual positive/negative selection marker pairs flanked by piggyBac inverted terminal repeats (ITRs) have been constructed and are available for precise genome engineering in Y. lipolytica using this method. This protocol specifically describes the split marker homologous recombination-based disruption of Y. lipolytica ADE2 with a piggyBac ITR-flanked URA3 cassette, followed by piggyBac transposase-mediated excision of the URA3 marker to leave a 50 nucleotide synthetic barcode at the ADE2 locus. The resulting ade2 strain is auxotrophic for adenine, which enables the use of ADE2 as a selectable marker for further strain engineering.


Assuntos
Elementos de DNA Transponíveis , Engenharia Genética/métodos , Transposases/metabolismo , Yarrowia/genética , Vetores Genéticos , Genoma Fúngico , Recombinação Homóloga , Fluxo de Trabalho
2.
ACS Synth Biol ; 7(4): 1075-1084, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29565571

RESUMO

Efficient guide RNA expression often limits CRISPR-Cas9 implementation in new hosts. To address this limitation in fungal systems, we demonstrate the utility of a T7 polymerase system to effectively express sgRNAs. Initially, we developed a methodology in Saccharomyces cerevisiae using a modified version of the T7 P266L mutant polymerase with an SV40 nuclear localization signal to allow guide RNA expression immediately downstream of a T7 promoter. To improve targeting efficiency, guide RNA design was found to be tolerant to three mismatches or up to three additional bases appended to the 5' end. The addition of three guanines to a T7-based guide RNA improved guide RNA expression 80-fold and achieved transcriptional output similar to the strong Pol III snr52 promoter. Resulting gene editing and dCas9-guided gene regulation with a T7-based guide RNA was on par with the commonly used snr52 system in S. cerevisiae. Finally, 96% and 60% genome editing efficiencies were achieved in Kluyveromyces lactis and Yarrowia lipolytica respectively with minimal optimization of this system. Thus, T7-based expression of sgRNAs offers an orthogonal method for implementing CRISPR systems in fungal systems.


Assuntos
Sistemas CRISPR-Cas , RNA Polimerases Dirigidas por DNA/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Proteínas Virais/genética , Leveduras/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Guanina , Microrganismos Geneticamente Modificados , Mutação , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas Virais/metabolismo , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...