Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1087035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938004

RESUMO

Traditional treatment of wastewaters is a burden for local governments. Using short rotation coppice willow (SRCW) as vegetal filter has several environmental and economic benefits. Here, we investigated the effect of primary wastewater irrigation on wood structure and composition of the willow cultivar Salix miyabeana 'SX67' following two years of growth. Compared to unirrigated plants (UI), stem sections of plants irrigated with primary wastewater (WWD) showed an unexpected decrease of hydraulic conductance (KS) associated with a decrease in vessel density but not vessel diameter. The majority (86%) of vessels had diameters range groups [20-30[, [30-40[and [40-50[µm and contributed to > 75% of theoretical KS, while the group class [50-60[µm (less than 10% of vessels) still accounted for > 20% of total KS regardless irrigation treatments. WWD significantly alters the chemical composition of wood with an increase of glucan content by 9 to 16.4% and a decrease of extractives by 35.3 to 36.4% when compared to UI or to plants irrigated with potable water (PW). The fertigation did also increase the proportion of the tension wood which highly correlated with glucan content. In the context of energetic transition and mitigation of climate change, such results are of high interest since WWD effectively permit the phytofiltration of large amounts of organic contaminated effluents without impairing SRCW physiology.

2.
Environ Microbiol ; 25(12): 2897-2912, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36975075

RESUMO

The herbicide glyphosate has several potential entry points into composting sites and its impact on composting processes has not yet been evaluated. To assess its impact on bacterial diversity and abundance as well as on community composition and dynamics, we conducted a mesocosm experiment at the Montreal Botanical Garden. Glyphosate had no effect on physicochemical property evolution during composting, while it was completely dissipated by the end of the experiment. Sampling at Days 0, 2, 28 and 112 of the process followed by 16S rRNA amplicon sequencing also found no effect of glyphosate on species richness and community composition. Differential abundance analyses revealed an increase of a few taxa in the presence of glyphosate, namely TRA3-20 (order Polyangiales), Pedosphaeraceae and BIrii41 (order Burkholderiales) after 28 days. In addition, five amplicon sequence variants (ASVs) had lower relative abundance in the glyphosate treatment compared to the control on Day 2, namely Comamonadaceae, Pseudomonas sp., Streptomyces sp., Thermoclostridium sp. and Actinomadura keratinilytica, while two ASVs were less abundant on Day 112, namely Pedomicrobium sp. and Pseudorhodoplanes sp. Most differences in abundance were measured between the different sampling points within each treatment. These results present glyphosate as a poor determinant of species recruitment during composting.


Assuntos
Compostagem , Herbicidas , Streptomyces , Glifosato , RNA Ribossômico 16S/genética , Herbicidas/farmacologia , Streptomyces/genética
3.
Plants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616296

RESUMO

Phytoremediation shows great promise as a plant-based alternative to conventional clean-up methods that are prohibitively expensive. As part of an integrated strategy, the selection of well-adapted plant species as well as planting and management techniques could determine the success of a long-term program. Herein, we conducted an experiment under semi-controlled conditions to screen different plants species with respect to their ability to phytoremediate Zn-contaminated soil excavated from a contaminated site following a train derailment and spillage. The effect of nitrilotriacetic acid (NTA) application on the plants and soil was also comprehensively evaluated, albeit we did not find its use relevant for field application. In less than 100 days, substantial Zn removal occurred in the soil zone proximal to the roots of all the tested plant species. Three perennial herbaceous species were tested, namely, Festuca arundinacea, Medicago sativa, and a commercial mix purposely designed for revegetation; they all showed strong capacity for phytostabilization at the root level but not for phytoextraction. The Zn content in the aboveground biomass of willows was much higher. Furthermore, the degree of growth, physiological measurements, and the Zn extraction yield indicated Salix purpurea 'Fish Creek' could perform better than Salix miyabeana, 'SX67', in situ. Therefore, we suggest implementing an S. purpurea­perennial herbaceous co-cropping strategy at this decade-long-abandoned contaminated site or at similar disrupted landscapes.

4.
Chemosphere ; 279: 130517, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901893

RESUMO

Phytoremediation of copper contaminated soil poses particular difficulties because of the low Cu mobility in the soil. Although several plant species, such as willows or Brassicaceae, have been used in the phytomanagement of abandoned brownfields, certain trace elements, such as copper often remain difficult to treat or remove from contaminated soils. An experiment was conducted under semi-controlled conditions to test the phytoremediation potential of co-planting two crop species, Brassica napus L. and Salix nigra 'S05', in soil spiked with two concentrations of Cu (500 mg kg-1 and 800 mg kg-1). Particular attention was given to the potential of 1) the co-plantation design and 2) uprooting, to efficiently mimic the remediation of a Cu-contaminated soil. Results showed that most Cu was found in plant roots and that the polyculture treatment produced the most overall biomass and maximum stabilization and extraction of Cu of the three treatments tested, regardless of contamination level.


Assuntos
Brassica napus , Salix , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Cobre/análise , Solo , Poluentes do Solo/análise
5.
Cells ; 8(3)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818743

RESUMO

Previous experiments using heat exchangers (liquid cooled blocks) to chill a portion of plant stem have shown a transient stoppage in phloem translocation and an increase in measured phloem pressure. Although a chilled-induced stoppage of phloem transport has been known for over 100 years, the mechanism of this phenomenon is still poorly understood. Recently, work has highlighted that aquaporins occur within the plasma membrane of the sieve tubes along the entire source-to-sink pathway, and that isoforms of these water channel proteins may change dynamically. Aquaporins show regulatory roles in controlling tissue and cellular water status in response to environmental hardships. Thus, we tested if protein localization and mRNA transcript abundance changes occur in response to chilling in balsam poplar (Populus balsamifera) using immunohistochemistry and qrtPCR. The results of the immunolocalization experiments show that the labeling intensity of the sieve elements treated for only 2 min of chill time significantly increased for PIP2. After 10 min of chilling, this signal declined significantly to lower than that of the pre-chilled sieve elements. Overall, the abundance of mRNA transcript increased for the tested PIP2s following cold application. We discuss the implication that aquaporins are responsible for the alleviation of sieve tube pressure and the resumption of flow following a cold-induced blockage event.


Assuntos
Aquaporinas/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Floema/genética , Proteínas de Plantas/genética , Aquaporinas/genética , Processamento de Imagem Assistida por Computador , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/genética , Populus/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Front Plant Sci ; 9: 1267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233614

RESUMO

White spruce [Picea glauca (Moench) Voss] is a commercially valuable boreal tree that has been known for its ability to colonize deglaciated rock tailings. Over the last decade, there has been an increasing interest in using this species for the revegetation and successful restoration of abandoned mine spoils. Herein, we conducted a glasshouse experiment to screen mycorrhizal fungi and rhizobacteria capable of improving the health and growth of white spruce seedlings growing directly on waste rocks (WRs) or fine tailings (FTs) from the Sigma-Lamaque gold mine located in the Canadian Abitibi region. After 32 weeks, measurements of health, growth, and mycorrhizal colonization variables of seedlings were performed. Overall, symbionts isolated from roots of healthy white spruce seedlings growing on the mining site, especially Cadophora finlandia Cad. fin. MBN0213 GenBank No. KC840625 and Pseudomonas putida MBN0213 GenBank No. AY391278, were more efficient in enhancing seedling health and growth than allochthonous species and constitute promising microbial symbionts. In general, mycorrhizae promoted plant health and belowground development, while rhizobacteria enhanced aboveground plant biomass. The observed beneficial effects were substrate-, strain-, and/or strains combination-specific. Therefore, preliminary experiments in control conditions such as the one described here can be part of an efficient and integrated strategy to select ecologically well-adapted symbiotic microorganisms, critical for the success of a long-term revegetation program.

7.
Front Plant Sci ; 9: 1268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233615

RESUMO

In the context of a phytorestoration project, the purpose of this study was to assess the respective contribution to the nutritional status of Picea glauca seedlings of ectomycorrhizae and rhizobacteria native or not to the Sigma-Lamaque gold mine wastes in northern Quebec, Canada. In a glasshouse experiment, inoculated plants were grown for 32 weeks on coarse waste rocks or fine tailings obtained from the mining site. The survival, health, growth, and nutritional status of plants were better on coarse waste rocks than on fine tailings. Fe and Ca were especially found at high levels in plant tissues but at much lower concentrations on waste rocks. Interestingly, inoculation of microsymbionts had only minimal effects on N, P, K, and Mg plant status that were indeed close or within the concentration range encountered in healthy seedlings. However, both fungal and bacterial treatments improved Fe and Ca concentrations in plant tissues. Fe concentration in the foliage of plants inoculated with the fungi Tricholoma scalpturatum Tri. scalp. MBN0213 GenBank #KC840613 and Cadophora finlandia Cad. fin. MBN0213 GenBank #KC840625 was reduced by >50%. Both fungi were isolated from the mining site. The rhizobacteria, Azotobacter chroococcum, also improved plant Fe level in some cases. Regarding Ca nutritional status, the native bacterial strain Pseudomonas putida MBN0213 GenBank #AY391278 was the only symbiont that reduced foliar content by up to 23%. Ca concentration was negatively correlated with the fungal mycorrhization rate of seedling roots. This relation was especially strong (r = -0.66, p-value ≤ 0.0001) in the case of C. finlandia. Also, a similar relationship existed with root Fe concentration (r = -0.44, p-value ≤ 0.0001). In fact, results showed that seedling performance was more correlated with elevated Ca and Fe concentration in planta than with nutrient deficiency. Also, native microsymbionts were capable of regulating seedling nutrition in the poor substrate of the Sigma-Lamaque gold mine tailings.

8.
New Phytol ; 217(2): 713-725, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29044534

RESUMO

Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. We have conducted the first comprehensive transcriptomic analysis of all three organisms in an effort to understand the elusive properties of Pseudozyma flocculosa in the context of its biocontrol activity against Blumeria graminis f.sp. hordei as it parasitizes Hordeum vulgare. After inoculation of P. flocculosa, the tripartite interaction was monitored over time and samples collected for scanning electron microscopy and RNA sequencing. Based on our observations, P. flocculosa indirectly parasitizes barley, albeit transiently, by diverting nutrients extracted by B. graminis from barley leaves through a process involving unique effectors. This brings novel evidence that such molecules can also influence fungal-fungal interactions. Their release is synchronized with a higher expression of powdery mildew haustorial effectors, a sharp decline in the photosynthetic machinery of barley and a developmental peak in P. flocculosa. The interaction culminates with a collapse of B. graminis haustoria, thereby stopping P. flocculosa growth, as barley plants show higher metabolic activity. To conclude, our study has uncovered a complex and intricate phenomenon, described here as hyperbiotrophy, only achievable through the conjugated action of the three protagonists.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/genética , Ascomicetos/ultraestrutura , Basidiomycota/ultraestrutura , Transporte Biológico , Celobiose/análogos & derivados , Celobiose/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicolipídeos/farmacologia , Hordeum/ultraestrutura , Modelos Biológicos , Fenótipo , Fotossíntese , Transcriptoma/genética
9.
Front Plant Sci ; 8: 949, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642768

RESUMO

Together with longer production periods, the commercial transition to day-neutral strawberry (Fragaria × ananassa) varieties has favored the development of diseases such as powdery mildew (Podosphaera aphanis) that thrives in late summer-early fall. In an attempt to find alternative solutions to fungicides currently employed to curb the disease, we wanted to investigate the potential of silicon (Si) amendments that have been associated with prophylactic properties against powdery mildews. To this end, our first objective was to determine if strawberry was a Si-competent species following the recent characterization of the properties of Si transporters that plants must carry to uptake silicic acid. Based on genomic data, we were able to conclude that strawberry contained both functional influx (Lsi1) and efflux (Lsi2) transporters for Si uptake. Subsequently commercial experiments under high tunnel and field conditions were conducted with different Si fertilization regimes: constant soluble Si feeding in high tunnel, and bi-weekly soluble Si feeding or three concentrations of calcium silicate fertilization in the field. Results from high tunnel experiments showed that strawberry could accumulate as much as 3% Si on a dry-weight basis, the highest concentration ever reported for this species. All six tested cultivars contained roughly the same concentration, thereby confirming the limited genetic variability, also observed in other species, associated with the trait. Silicon fertilization under high tunnel led to a significant reduction of powdery mildew severity in both years and on all cultivars, and a significant increase in yield of marketable fruits reaching as much as 300% with cv. Monterey. By contrast, Si fertilization under field conditions in soils deficient in plant available Si, either in soluble or solid form, did not result in significant accumulation of Si in plants, regardless of the cultivars, year or concentrations. Our results have thus provided both genotypic and phenotypic proof that strawberry can greatly benefit from Si fertilization, but have also highlighted the importance of validating the fertilization regime to ensure that Si is properly absorbed and/or available to the plant.

10.
Am J Bot ; 104(5): 719-732, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28526726

RESUMO

PREMISE OF THE STUDY: Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. METHODS: We studied histological sections of balsam poplar (Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. KEY RESULTS: Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. CONCLUSIONS: The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem.


Assuntos
Aquaporinas/fisiologia , Floema/fisiologia , Proteínas de Plantas/fisiologia , Populus/fisiologia , Folhas de Planta/fisiologia
12.
PLoS One ; 9(11): e111751, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25406088

RESUMO

Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.


Assuntos
Aquaporinas/metabolismo , Proteínas de Membrana/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Estresse Fisiológico , Aquaporinas/genética , Proteínas de Membrana/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Populus/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Água/metabolismo
13.
New Phytol ; 203(2): 388-400, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24702644

RESUMO

Conifer needles have been reported to absorb water under certain conditions. Radial water movement across needle tissues is likely influenced by aquaporin (AQP) water channels. Foliar water uptake and AQP localization in Picea glauca needles were studied using physiological and microscopic methods. AQP expression was measured using quantitative real-time PCR. Members of the AQP gene family in spruce were identified using homology search tools. Needles of drought-stressed plants absorbed water when exposed to high relative humidity (RH). AQPs were present in the endodermis-like bundle sheath, in phloem cells and in the transfusion parenchyma of needles. Up-regulation of AQPs in high RH coincided with embolism repair in stem xylem. The present study also provides the most comprehensive functional and phylogenetic analysis of spruce AQPs to date. Thirty putative complete AQP sequences were found. Our findings are consistent with the hypothesis that AQPs facilitate radial water movement from the needle epidermis towards the vascular tissue. Foliar water uptake may occur in late winter when needles are covered by melting snow and may provide a water source for embolism repair before the beginning of the growing season.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Picea/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Xilema/fisiologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Picea/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
14.
Plant Physiol ; 164(4): 1731-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24521876

RESUMO

Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.


Assuntos
Picea/fisiologia , Estações do Ano , Água/metabolismo , Xilema/fisiologia , Transporte Biológico , Picea/citologia , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Xilema/citologia
15.
J Exp Bot ; 64(8): 2283-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599275

RESUMO

Isohydric plants tend to maintain a water potential homeostasis primarily by controlling water loss via stomatal conductance. However, there is accumulating evidence that plants can also modulate water uptake in a dynamic manner. The dynamics of water uptake are influenced by aquaporin-mediated changes in root hydraulics. Most studies in this area have been conducted on herbaceous plants, and less is known about responses of woody plants. Here a study was conducted to determine how roots of hybrid poplar plants (Populus trichocarpa×deltoides) respond to a step change in transpirational demand. The main objective was to measure the expression of selected aquaporin genes and to assess how transcriptional responses correspond to changes in root water flow (Q R) and other parameters of water relations. A subset of plants was grown in shade and was subsequently exposed to a 5-fold increase in light level. Another group of plants was grown at ~95% relative humidity (RH) and was then subjected to lower RH while the light level remained unchanged. Both plant groups experienced a transient drop in stem water potentials. At 28h after the increase in transpirational demand, water potentials recovered. This recovery was associated with changes in the expression of PIP1 and PIP2 subfamily genes and an increase in Q R. Stomata of plants growing at high RH were larger and showed incomplete closure after application of abscisic acid. Since stomatal conductance remained high and unchanged in these plants, it is suggested that the recovery in water potential in these plants was largely driven by the increase in Q R.


Assuntos
Aquaporinas/biossíntese , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Populus/fisiologia , Aquaporinas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Umidade , Luz , Raízes de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/metabolismo , Água/metabolismo
16.
Plant Cell Environ ; 34(8): 1318-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477124

RESUMO

When light levels and evaporative demand increase, dynamic physiological changes in roots may be required to restore the water balance at the whole plant level. We hypothesized that a dynamic increase in root hydraulic conductance (L(P)) and aquaporin (AQP) expression could moderate the transpiration-induced drop in water potential (Ψ), allowing continued gas exchange in hybrid poplar (Populus trichocarpa × deltoides) saplings. Fifty-six AQPs have been identified in poplar, but little information about their expression patterns in roots is available, especially from a whole-plant water relations perspective. We measured AQP expression and L(P) in plants subjected to different levels of light and evaporative demand. Shaded plants had only one-tenth the root area of plants growing at higher light levels. Shade-grown saplings experiencing a sudden increase in light exhibited a threefold higher L(P) than plants remaining in shade. This dynamic increase in L(P) corresponded with increased transcript abundance of 15 AQPs out of a total of 33 genes simultaneously assessed by quantitative RT-PCR. The tissue-level localization of transcripts of four AQPs was studied with in situ hybridization. Comprehensive expression profiling in conjunction with physiological and morphological measurements is a valuable reference for future studies on AQP function in poplar.


Assuntos
Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Populus/fisiologia , Aclimatação , Aquaporinas/genética , Fenômenos Biofísicos , Quimera , Hibridização In Situ , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Populus/genética , Populus/metabolismo , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Plant Biotechnol J ; 9(1): 50-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20492548

RESUMO

Two C-repeat binding factor genes (EguCBF1a/b), isolated from E. gunnii and differentially cold-regulated, were constitutively overexpressed in a cold-sensitive Eucalyptus hybrid. In addition to the expected improvement on freezing tolerance, some resulting transgenic lines (EguCBF1a-OE and EguCBF1b-OE) exhibited a decrease in stomata density and an over-accumulation of anthocyanins also observed to a lesser extent in a cold-acclimated control plant. Given that the induction of five putative CBF target genes was observed in CBF-overexpressing lines as well as in the cold-acclimated control line, these phenotypes might be related to cold acclimation. In comparison with the control plant, the most altered transgenic line (EguCBF1a-OE A1 line), exhibited reduced growth and better water retention capacity. This modified phenotype includes reduced leaf area and thickness associated with a decrease in cell size, as well as a higher oil gland density and a wax deposition on the cuticle. Surprisingly, the EguCBF1b-OE B9 line, with a level of transgene expression equivalent to the A1 line, showed a less marked phenotype, suggesting a difference in transactivation efficiency between EguCBF1A and B factors. The features of these transgenic lines provide the first signs of adaptive mechanisms controlled by CBF transcription factors in an evergreen broad-leaved tree. These data also open new prospects towards genetic improvement on Eucalyptus for freezing tolerance.


Assuntos
Eucalyptus/fisiologia , Estresse Fisiológico , Transativadores/fisiologia , Temperatura Baixa , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , Congelamento , Regulação da Expressão Gênica de Plantas , Transativadores/genética , Transgenes/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...