Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 260: 121923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878320

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for the removal of dissolved iron (Fe2+) and ammonium (NH4+) among other contaminants in groundwater treatment. Most often, biological NH4+oxidation is spatially delayed and starts only upon complete Fe2+ depletion. However, the mechanism(s) responsible for the inhibition of NH4+oxidation by Fe2+ or its oxidation (by)products remains elusive, hindering further process control and optimization. We used batch assays, lab-scale columns, and full-scale filter characterizations to resolve the individual impact of the main Fe2+ oxidizing mechanisms and the resulting products on biological NH4+ oxidation. modeling of the obtained datasets allowed to quantitatively assess the hydraulic implications of Fe2+ oxidation. Dissolved Fe2+ and the reactive oxygen species formed as byproducts during Fe2+ oxidation had no direct effect on ammonia oxidation. The Fe3+ oxides on the sand grain coating, commonly assumed to be the main cause for inhibited ammonia oxidation, seemed instead to enhance it. modeling allowed to exclude mass transfer limitations induced by accumulation of iron flocs and consequent filter clogging as the cause for delayed ammonia oxidation. We unequivocally identify the inhibition of NH4+oxidizing organisms by the Fe3+ flocs generated during Fe2+ oxidation as the main cause for the commonly observed spatial delay in ammonia oxidation. The addition of Fe3+ flocs inhibited NH4+oxidation both in batch and column tests, and the removal of Fe3+ flocs by backwashing completely re-established the NH4+removal capacity, suggesting that the inhibition is reversible. In conclusion, our findings not only identify the iron form that causes the inhibition, albeit the biological mechanism remains to be identified, but also highlight the ecological importance of iron cycling in nitrifying environments.

2.
ISME Commun ; 4(1): ycae008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38577582

RESUMO

Nitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-dependent iron-oxidizing (NDFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to elucidate the structure and metabolism of nitrate-reducing iron-oxidizing microbiomes under oligotrophic conditions mimicking natural groundwaters. The enriched community stoichiometrically removed iron and nitrate consistently with the NDFO metabolism. Genome-resolved metagenomics revealed the underlying metabolic network between the dominant iron-dependent denitrifying autotrophs and the less abundant organoheterotrophs. The most abundant genome belonged to a new Candidate order, named Siderophiliales. This new species, "Candidatus Siderophilus nitratireducens," carries genes central genes to iron oxidation (cytochrome c cyc2), carbon fixation (rbc), and for the sole periplasmic nitrate reductase (nap). Using thermodynamics, we demonstrate that iron oxidation coupled to nap based dissimilatory reduction of nitrate to nitrite is energetically favorable under realistic Fe3+/Fe2+ and NO3-/NO2- concentration ratios. Ultimately, by bridging the gap between laboratory investigations and nitrate real-world conditions, this study provides insights into the intricate interplay between nitrate and iron in groundwater ecosystems, and expands our understanding of NDFOs taxonomic diversity and ecological role.

3.
Water Res ; 233: 119805, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868119

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.


Assuntos
Compostos de Amônio , Água Subterrânea , Purificação da Água , Manganês/química , Ferro , Compostos de Amônio/química , Amônia , Quartzo , Ecossistema , Água Subterrânea/química , Filtração/métodos , Purificação da Água/métodos
4.
Water Res ; 235: 119905, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989799

RESUMO

Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.


Assuntos
Água Potável , Microbiota , Purificação da Água , Água Potável/análise , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Bactérias/genética , Genes Bacterianos , Antibacterianos/análise , Cloro/análise
5.
Environ Sci Technol ; 57(9): 3883-3892, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36809918

RESUMO

Wastewater treatment plants (WWTPs) are a major source of N2O, a potent greenhouse gas with 300 times higher global warming potential than CO2. Several approaches have been proposed for mitigation of N2O emissions from WWTPs and have shown promising yet only site-specific results. Here, self-sustaining biotrickling filtration, an end-of-the-pipe treatment technology, was tested in situ at a full-scale WWTP under realistic operational conditions. Temporally varying untreated wastewater was used as trickling medium, and no temperature control was applied. The off-gas from the covered WWTP aerated section was conveyed through the pilot-scale reactor, and an average removal efficiency of 57.9 ± 29.1% was achieved during 165 days of operation despite the generally low and largely fluctuating influent N2O concentrations (ranging between 4.8 and 96.4 ppmv). For the following 60-day period, the continuously operated reactor system removed 43.0 ± 21.2% of the periodically augmented N2O, exhibiting elimination capacities as high as 5.25 g N2O m-3·h-1. Additionally, the bench-scale experiments performed abreast corroborated the resilience of the system to short-term N2O starvations. Our results corroborate the feasibility of biotrickling filtration for mitigating N2O emitted from WWTPs and demonstrate its robustness toward suboptimal field operating conditions and N2O starvation, as also supported by analyses of the microbial compositions and nosZ gene profiles.


Assuntos
Águas Residuárias , Purificação da Água , Óxido Nitroso/análise , Reatores Biológicos , Filtração , Esgotos
6.
ISME J ; 16(9): 2087-2098, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676322

RESUMO

Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 µmoles h-1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 µM; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.


Assuntos
Burkholderiales , Óxido Nitroso , Burkholderiales/genética , Desnitrificação , Metagenoma , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio
7.
Sci Total Environ ; 830: 154715, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337864

RESUMO

The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.


Assuntos
Oxidação Anaeróbia da Amônia , Bactérias , Anaerobiose , Hibridização in Situ Fluorescente , Lipídeos de Membrana , Oxirredução , RNA Ribossômico 16S/genética , Temperatura
8.
ISME J ; 16(2): 346-357, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341504

RESUMO

The enormous chemical diversity and strain variability of prokaryotic protein glycosylation makes their large-scale exploration exceptionally challenging. Therefore, despite the universal relevance of protein glycosylation across all domains of life, the understanding of their biological significance and the evolutionary forces shaping oligosaccharide structures remains highly limited. Here, we report on a newly established mass binning glycoproteomics approach that establishes the chemical identity of the carbohydrate components and performs untargeted exploration of prokaryotic oligosaccharides from large-scale proteomics data directly. We demonstrate our approach by exploring an enrichment culture of the globally relevant anaerobic ammonium-oxidizing bacterium Ca. Kuenenia stuttgartiensis. By doing so we resolve a remarkable array of oligosaccharides, which are produced by two seemingly unrelated biosynthetic routes, and which modify the same surface-layer protein simultaneously. More intriguingly, the investigated strain also accomplished modulation of highly specialized sugars, supposedly in response to its energy metabolism-the anaerobic oxidation of ammonium-which depends on the acquisition of substrates of opposite charges. Ultimately, we provide a systematic approach for the compositional exploration of prokaryotic protein glycosylation, and reveal a remarkable example for the evolution of complex oligosaccharides in bacteria.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/metabolismo , Glicosilação , Oxirredução
9.
Sci Total Environ ; 797: 149092, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34303231

RESUMO

Partial nitration-anammox is a resource-efficient technology for nitrogen removal from wastewater. However, the advantages of this nitrogen removal technology are challenged by the emission of N2O, a potent greenhouse gas. In this study, a granular sludge one-stage partial nitritation-anammox reactor comprising granules and flocs was run for 337 days in the presence of influent organics to investigate its effect on N removal and N2O emissions. Besides, the effect of aeration control strategies and flocs removal was investigated as well. The interpretation of the experimental results was complemented with modelling and simulation. The presence of influent organics (1 g COD g-1 N) helped to suppress NOB and significantly reduced the overall N2O emissions while having no significant effect on anammox activity. Besides, long-term monitoring of the reactor indicated that constant airflow rate control resulted in more stable effluent quality and less N2O emissions than DO control. Still, floc removal reduced N2O emissions at DO control but increased N2O emissions at constant airflow rate. Furthermore, anammox bacteria could significantly reduce N2O production during heterotrophic denitrification, likely via competition for NO with heterotrophs. Overall, this study demonstrated that the presence of influent organics together with proper aeration control strategies and floc management could significantly reduce the N2O emissions without compromising nitrogen removal efficiency during one-stage partial nitritation-anammox processes.


Assuntos
Compostos de Amônio , Desnitrificação , Reatores Biológicos , Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
10.
Chemosphere ; 274: 129720, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33548645

RESUMO

This study deals with the effect of aeration control strategies on the nitrogen removal efficiency and nitrous oxide (N2O) emissions in a partial nitritation-anammox reactor with granular sludge. More specifically, dissolved oxygen (DO) control, constant airflow and effluent ammonium (NH4+) control strategies were compared through a simulation study. Particular attention was paid to the effect of flocs, which are deliberately or unavoidable present besides granules in this type of reactor. When applying DO control, DO setpoints had to be adjusted to the amount of flocs present in the reactor to maintain high nitrogen removal and reduce N2O emissions, which is difficult to realize in practice because of variable floc fractions. Constant airflow rate control could maintain a good nitrogen removal efficiency independent of the floc fraction in the reactor, but failed in N2O mitigation. Controlling aeration based on the effluent ammonium concentration results in both high nitrogen removal and relatively low N2O emissions, also in the presence of flocs. Fluctuations in floc fractions caused significant upsets in nitrogen removal and N2O emissions under DO control but had less effect at constant airflow and effluent ammonium control. Still, rapid and sharp drops in flocs led to a peak in N2O emissions at constant airflow and effluent ammonium control. Overall, effluent ammonium control reached the highest average nitrogen removal and lowest N2O emissions and consumed the lowest aeration energy under fluctuating floc concentrations.


Assuntos
Compostos de Amônio , Nitrogênio , Reatores Biológicos , Desnitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Oxirredução , Esgotos
11.
Water Res ; 186: 116348, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911269

RESUMO

A model-based study was developed to analyse the behaviour of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS) reactor configurations for the removal of nitrogen in the main water line of municipal wastewater treatment plants via partial nitritation/anammox (PN/AMX). The basic principles and underlying mechanisms linking operating conditions to process performance were investigated, with particular focus on nitrite oxidizing bacteria (NOB) repression and resulting volumetric conversion rates. The external mass transfer resistance is a major factor differentiating granular sludge PN/AMX processes from MBBR or IFAS systems. The external mass transfer resistance was found to promote the metabolic coupling between anammox (AMX) and ammonia oxidizing bacteria (AOB), crucial for NOB repression in the biofilm. Operation at low bulk DO prevents NOB proliferation in the flocs of IFAS systems as AMX activity limits nitrite availability (the so-called AMX nitrite sink). Importantly, the effectiveness of the AMX nitrite sink strongly depends on the AMX sensitivity to oxygen. Also, over a broad range of operational conditions, the seeding of AOB from the biofilm played a crucial role in maintaining their activity in the flocs. From a practical perspective, while low DO promotes NOB repression, lower nitrogen loads have to be applied to maintain the same effluent quality. Thus, a trade-off between NOB repression and volumetric conversion capacity needs to be defined. To this end, IFAS allow for higher volumetric rates, but the window of operating conditions with effective NOB repression is smaller than that for MBBR. Ultimately, this study identified the principles controlling NOB in MBBR and IFAS systems and the key differences with granular reactors, allowing for the interpretation of (seemingly contradictory) published experimental results.


Assuntos
Compostos de Amônio , Nitritos , Bactérias/genética , Biofilmes , Reatores Biológicos , Nitrogênio , Oxirredução , Esgotos
12.
Water Res ; 184: 116188, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739592

RESUMO

Hydroxylamine is a key intermediate in several biological reactions of the global nitrogen cycle. However, the role of hydroxylamine in anammox is still not fully understood. In this work, the impact of hydroxylamine (also in combination with other substrates) on the metabolism of a planktonic enrichment culture of the anammox species Ca. Kuenenia stuttgartiensis was studied. Anammox bacteria were observed to produce ammonium both from hydroxylamine and hydrazine, and hydroxylamine was consumed simultaneously with nitrite. Hydrazine accumulation - signature for the presence of anammox bacteria - strongly depended on the available substrates, being higher with ammonium and lower with nitrite. Furthermore, the results presented here indicate that hydrazine accumulation is not the result of the inhibition of hydrazine dehydrogenase, as commonly assumed, but the product of hydroxylamine disproportionation. All kinetic parameters for the identified reactions were estimated by mathematical modelling. Moreover, the simultaneous consumption and growth on ammonium, nitrite and hydroxylamine of anammox bacteria was demonstrated, this was accompanied by a reduction in the nitrate production. Ultimately, this study advances the fundamental understanding of the metabolic versatility of anammox bacteria, and highlights the potential role played by metabolic intermediates (i.e. hydroxylamine, hydrazine) in shaping natural and engineered microbial communities.


Assuntos
Bactérias , Nitritos , Anaerobiose , Hidroxilamina , Hidroxilaminas , Oxirredução
14.
Water Res ; 154: 104-116, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782552

RESUMO

The control of nitrite-oxidizing bacteria (NOB) challenges the implementation of partial nitritation and anammox (PN/A) processes under mainstream conditions. The aim of the present study was to understand how operating conditions impact microbial competition and the control of NOB in hybrid PN/A systems, where biofilm and flocs coexist. A hybrid PN/A moving-bed biofilm reactor (MBBR; also referred to as integrated fixed film activated sludge or IFAS) was operated at 15 °C on aerobically pre-treated municipal wastewater (23 mgNH4-N L-1). Ammonium-oxidizing bacteria (AOB) and NOB were enriched primarily in the flocs, and anammox bacteria (AMX) in the biofilm. After decreasing the dissolved oxygen concentration (DO) from 1.2 to 0.17 mgO2 L-1 - with all other operating conditions unchanged - washout of NOB from the flocs was observed. The activity of the minor NOB fraction remaining in the biofilm was suppressed at low DO. As a result, low effluent NO3- concentrations (0.5 mgN L-1) were consistently achieved at aerobic nitrogen removal rates (80 mgN L-1 d-1) comparable to those of conventional treatment plants. A simple dynamic mathematical model, assuming perfect biomass segregation with AOB and NOB in the flocs and AMX in the biofilm, was able to qualitatively reproduce the selective washout of NOB from the flocs in response to the decrease in DO-setpoint. Similarly, numerical simulations indicated that flocs removal is an effective operational strategy to achieve the selective washout of NOB. The direct competition for NO2- between NOB and AMX - the latter retained in the biofilm and acting as a "NO2-sink" - was identified by the model as key mechanism leading to a difference in the actual growth rates of AOB and NOB (i.e., µNOB < µAOB in flocs) and allowing for the selective NOB washout over a broad range of simulated sludge retention times (SRT = 6.8-24.5 d). Experimental results and model predictions demonstrate the increased operational flexibility, in terms of variables that can be easily controlled by operators, offered by hybrid systems as compared to solely biofilm systems for the control of NOB in mainstream PN/A applications.


Assuntos
Biofilmes , Nitritos , Bactérias , Biomassa , Reatores Biológicos , Nitrogênio , Oxirredução
15.
Water Res ; 101: 628-639, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27348722

RESUMO

The implementation of autotrophic anaerobic ammonium oxidation processes for the removal of nitrogen from municipal wastewater (known as "mainstream anammox") bears the potential to bring wastewater treatment plants close to energy autarky. The aim of the present work was to assess the long-term stability of partial nitritation/anammox (PN/A) processes operating at low temperatures and their reliability in meeting nitrogen concentrations in the range of typical discharge limits below 2  [Formula: see text] and 10 mgNtot·L(-1). Two main 12-L sequencing batch reactors were operated in parallel for PN/A on aerobically pre-treated municipal wastewater (21 ± 5 [Formula: see text] and residual 69 ± 19 mgCODtot·L(-1)) for more than one year, including over 5 months at 15 °C. The two systems consisted of a moving bed biofilm reactor (MBBR) and a hybrid MBBR (H-MBBR) with flocculent biomass. Operation at limiting oxygen concentrations (0.15-0.18 [Formula: see text] ) allowed stable suppression of the activity of nitrite-oxidizing bacteria at 15 °C with a production of nitrate over ammonium consumed as low as 16% in the MBBR. Promising nitrogen removal rates of 20-40 mgN·L(-1)·d(-1) were maintained at hydraulic retention times of 14 h. Stable ammonium and total nitrogen removal efficiencies over 90% and 70% respectively were achieved. Both reactors reached average concentrations of total nitrogen below 10 mgN·L(-1) in their effluents, even down to 6 mgN·L(-1) for the MBBR, with an ammonium concentration of 2 mgN·L(-1) (set as operational threshold to stop aeration). Furthermore, the two PN/A systems performed almost identically with respect to the biological removal of organic micropollutants and, importantly, to a similar extent as conventional treatments. A sudden temperature drop to 11 °C resulted in significant suppression of anammox activity, although this was rapidly recovered after the temperature was increased back to 15 °C. Analyses of 16S rRNA gene-targeted amplicon sequencing revealed that the anammox guild of the bacterial communities of the two systems was composed of the genus "Candidatus Brocadia". The potential of PN/A systems to compete with conventional treatments for biological nutrients removal both in terms of removal rates and overall effluent quality was proven.


Assuntos
Reatores Biológicos/microbiologia , Temperatura , Anaerobiose , Nitrogênio , Oxirredução , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Purificação da Água
16.
Water Res ; 80: 325-36, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26024830

RESUMO

Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side population beneficial for them. Additionally, by combining microautoradiography and fluorescence in situ hybridization it was confirmed that the anammox organisms involved in the process did not directly incorporate or store the amended acetate and glucose. In conclusion, these investigations strongly support the feasibility of MWW treatment via anammox.


Assuntos
Amônia/química , Bactérias/metabolismo , Biomassa , Águas Residuárias/química , Acetatos/química , Acetatos/metabolismo , Aerobiose , Amônia/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Cidades , Glucose/química , Glucose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microscopia Confocal , Nitritos/química , Nitritos/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Temperatura , Fatores de Tempo , Águas Residuárias/microbiologia , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...