Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 236(8): 1106-1117, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778813

RESUMO

Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Fêmur , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Cartilagem/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Camundongos , Proteína de Matriz Gla
2.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971891

RESUMO

(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.

3.
Ann Transl Med ; 8(6): 304, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355748

RESUMO

BACKGROUND: A new model of 3D-printed temporal bone with an innovative distinction between soft and hard tissues is described and presented in the present study. An original method is reported to quantify the model's ability to reproduce the complex anatomy of this region. METHODS: A CT-scan of temporal bone was segmented and prepared to obtain 3D files adapted to multi-material printing technique. A final product was obtained with two different resins differentiating hard from soft tissues. The reliability of the anatomy was evaluated by comparing the original CT-scan and the pre-processed files sent to the printer in a first step, and by quantifying the printing technique in a second step. Firstly, we evaluated the segmentation and mesh correction steps by segmenting each anatomical region in the CT-scan by two different other operators without mesh corrections, and by computing distances between the obtained geometries and the pre-processed ones. Secondly, we evaluated the printing technique by comparing the printed geometry imaged using µCT with the pre-processed one. RESULTS: The evaluation of the segmentation and mesh correction steps revealed that the distance between both geometries was globally less that one millimeter for each anatomical region and close to zero for regions such as temporal bone, semicircular canals or facial nerve. The evaluation of the printing technique revealed mismatches of 0.045±0.424 mm for soft and -0.093±0.240 mm for hard tissues between the initial prepared geometry and the actual printed model. CONCLUSIONS: While other reported models for temporal bone are simpler and have only been validated subjectively, we objectively demonstrated in the present study that our novel artificial bi-material temporal bone is consistent with the anatomy and thus could be considered into ENT surgical education programs. The methodology used in this study is quantitative, inspired by engineer sciences, making it the first of its kind. The validity of the manufacturing process has also been verified and could, therefore, be extended to other specialties, emphasizing the importance of cross-disciplinary collaborations concerning new technologies.

4.
J Strength Cond Res ; 34(6): 1503-1510, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32271290

RESUMO

Laurent, C, Baudry, S, and Duchateau, J. Comparison of plyometric training with two different jumping techniques on Achilles tendon properties and jump performances. J Strength Cond Res 34(6): 1503-1510, 2020-This study compared the influence of 10 weeks of plyometric training with 2 different jumping techniques on Achilles tendon properties and the height achieved in drop jumps (from 20, 40, and 60 cm) and countermovement jumps (CMJ). Subjects were allocated to 2 training groups (n = 11 in each group) and 1 control group (CON, n = 10). One training group kept the knees extended (KE) during ground contact, whereas the other training group flexed the knees to ∼80-90° (KF). Achilles tendon stiffness was assessed with ultrasonography, and jump performance was derived from force platform recording. Training increased jump height (p < 0.01) in both groups. The increase for the 20-cm drop jump was greater (p < 0.05) for the KE group (11.3%) thanfor the KF group (6.3%), with no statistical difference between groups for the 40- and 60-cm drop jumps. Contact time during the 20-cm drop jump decreased (∼8%; p < 0.01) after training, with no difference between the training groups. The increase in CMJ height was greater (p = 0.05) for the KF group (17.5%) than for the KE group (11.8%). Achilles tendon stiffness increased (32%; p < 0.001) for the KE group but not for the KF group (11%; p = 0.28). There was a positive association (p < 0.001) between the changes in tendon stiffness and jump height for 20-cm drop jump in both KE group (r = 0.49) and KF group (r = 0.62). None of these parameters changed in CON group. In conclusion, the extent of increase in jump height (20-cm drop jump and CMJ) and in Achilles tendon stiffness after training differed between the 2 jumping techniques.


Assuntos
Tendão do Calcâneo/fisiologia , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Exercício Pliométrico/métodos , Tendão do Calcâneo/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Amplitude de Movimento Articular , Ultrassonografia , Adulto Jovem
5.
Proc Inst Mech Eng H ; 234(3): 255-264, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31608817

RESUMO

Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone-implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes®) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture.


Assuntos
Força Compressiva , Úmero/fisiologia , Testes Mecânicos , Ortopedia , Próteses e Implantes , Animais , Fenômenos Biomecânicos , Cães , Análise de Elementos Finitos
6.
J Biomed Mater Res A ; 106(12): 3042-3052, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194699

RESUMO

The challenge of finding an adapted scaffold for ligament tissue engineering remains unsolved after years of researches. A technology to fabricate a multilayer braided scaffold with flexible and elastic poly (l-lactide-co-caprolactone) (PLCL 85/15) has been recently pioneered by our team. In this study, polyelectrolyte multilayer films (PEM) with poly-l-lysine (PLL)/ hyaluronic acid (HA) were deposited on this scaffold. After PEM modification, polygonal (PLL) and particle-like (HA) structures were present on the braided scaffold with no significant variation of fibers Young's modulus. Wharton's jelly mesenchymal stem cells (WJ-MSC) and bone marrow mesenchymal stem cells (BM-MSC) showed good metabolic activity on scaffolds. They presented a spindled shape along the fiber longitudinal direction, and crossed the fibers to form cell bridges. Collagen type I, collagen type III, and tenascin-C secreted by MSCs were detected on day 14. Moreover, one-layer modified scaffold presented increased chemotaxis. As a conclusion, our results indicate that this braided PLCL scaffold with one-layer PEM modification shows inspiring potential with satisfying mechanical properties and biocompatibility. It opens new perspectives to incorporate growth factors within PEM-modified braided PLCL scaffold for ligament tissue engineering and to recruit endogenous cells after implantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3042-3052, 2018.


Assuntos
Ácido Hialurônico/química , Ligamentos/citologia , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Polilisina/química , Alicerces Teciduais/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Módulo de Elasticidade , Humanos , Ácido Hialurônico/metabolismo , Ligamentos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Poliésteres/metabolismo , Polilisina/metabolismo , Engenharia Tecidual/métodos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo
7.
J Biomater Appl ; 32(9): 1276-1288, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29409376

RESUMO

Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células Cultivadas , Humanos , Hidrólise , Teste de Materiais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos Nus , Resistência à Tração
8.
Int J Mol Sci ; 18(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065466

RESUMO

Maintenance of mesenchymal stem cells (MSCs) requires a tissue-specific microenvironment (i.e., niche), which is poorly represented by the typical plastic substrate used for two-dimensional growth of MSCs in a tissue culture flask. The objective of this study was to address the potential use of collagen-based medical devices (HEMOCOLLAGENE®, Saint-Maur-des-Fossés, France) as mimetic niche for MSCs with the ability to preserve human MSC stemness in vitro. With a chemical composition similar to type I collagen, HEMOCOLLAGENE® foam presented a porous and interconnected structure (>90%) and a relative low elastic modulus of around 60 kPa. Biological studies revealed an apparently inert microenvironment of HEMOCOLLAGENE® foam, where 80% of cultured human MSCs remained viable, adopted a flattened morphology, and maintained their undifferentiated state with basal secretory activity. Thus, three-dimensional HEMOCOLLAGENE® foams present an in vitro model that mimics the MSC niche with the capacity to support viable and quiescent MSCs within a low stiffness collagen I scaffold simulating Wharton's jelly. These results suggest that haemostatic foam may be a useful and versatile carrier for MSC transplantation for regenerative medicine applications.


Assuntos
Microambiente Celular , Colágeno , Células-Tronco Mesenquimais , Preservação Biológica/métodos , Medicina Regenerativa/instrumentação , Humanos
9.
Bioengineering (Basel) ; 4(1)2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28952494

RESUMO

Cells respond to their mechanical environment in different ways: while their response in terms of differentiation and proliferation has been widely studied, the question of the direction in which cells align when subject to a complex mechanical loading in a 3D environment is still widely open. In the present paper, we formulate the hypothesis that the cells orientate in the direction of unitary stretch computed from the right Cauchy-Green tensor in a given mechanical environment. The implications of this hypothesis are studied in different simple cases corresponding to either the available in vitro experimental data or physiological conditions, starting from finite element analysis results to computed preferential cellular orientation. The present contribution is a first step to the formulation of a deeper understanding of the orientation of cells within or at the surface of any 3D scaffold subject to any complex load. It is believed that these initial preferential directions have strong implications as far as the anisotropy of biological structures is concerned.

10.
Proc Inst Mech Eng H ; 230(7): 639-49, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27129383

RESUMO

Subject-specific finite element models could improve decision making in canine long-bone fracture repair. However, it preliminary requires that finite element models predicting the mechanical response of canine long bone are proposed and validated. We present here a combined experimental-numerical approach to test the ability of subject-specific finite element models to predict the bending response of seven pairs of canine humeri directly from medical images. Our results show that bending stiffness and yield load are predicted with a mean absolute error of 10.1% (±5.2%) for the 14 samples. This study constitutes a basis for the forthcoming optimization of canine long-bone fracture repair.


Assuntos
Úmero/anatomia & histologia , Úmero/fisiologia , Animais , Fenômenos Biomecânicos , Cães , Análise de Elementos Finitos , Úmero/diagnóstico por imagem , Técnicas In Vitro , Modelos Biológicos , Estresse Mecânico , Tomografia Computadorizada por Raios X
11.
Bioresour Technol ; 196: 184-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26241837

RESUMO

An outdoor raceway pond with microalgal bacterial flocs (MaB-flocs) is a novel sunlight-based system to treat pikeperch aquaculture wastewater while producing biomass. The harvested MaB-floc biomass (33tonTSha(-1)y(-1)) needs further valorization. Therefore, the biochemical methane yield (BMY) of MaB-floc biomass was determined in batch experiments. The results show significant differences between the BMY of MaB-flocs amongst their harvest dates (128-226NLCH4kg(-1)VS), a low anaerobic digestion conversion efficiency (25.0-36.2%), a moderate chlorophyll a removal (51.5-86.9%) and a low biogas profit (<0.01€m(-3)wastewater). None of the pretreatment methods screened (freezing, thermal, microwave, ultrasonic and chlorination, flue gas sparging, and acid) can be recommended due to a low BMY improvement and/or unfavorable energy balance. Therefore, anaerobic digestion of this MaB-floc biomass should only be granted a supporting role within a biorefinery concept.


Assuntos
Metano/metabolismo , Microalgas/metabolismo , Gerenciamento de Resíduos/métodos , Águas Residuárias/microbiologia , Anaerobiose , Aquicultura , Biocombustíveis/economia , Biomassa , Reatores Biológicos/microbiologia , Clorofila/análogos & derivados , Clorofila A , Lagoas/microbiologia , Estações do Ano
12.
Res Vet Sci ; 98: 115-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487559

RESUMO

Cranial cruciate ligament (CrCL) deficiency is the leading cause of lameness of the canine stifle. Application of tension in the quadriceps muscle could trigger cranial tibial translation in case of CrCL rupture. We replaced the quadriceps muscle and the gastrocnemius muscle by load cells and turn-buckles. First, eight canine limbs were placed in a servo-hydraulic testing machine, which applied 50% of body weight (BW). In a second phase, the CrCL was transected, and the limbs were tested in a similar manner. In a third phase, a quadriceps pretension of 15% BW was applied and limbs were again tested in a similar manner. Cranial tibial translation was significantly decreased in CrCL deficient stifles (p < 0.05) when quadriceps pretension was applied. These findings indicate that quadriceps pretension could play a role in the stability of a CrCL deficient stifle and should then be considered in rehabilitation programs and conservative treatment of CrCL rupture in dogs.


Assuntos
Ligamento Cruzado Anterior/fisiologia , Cães/fisiologia , Marcha , Músculo Quadríceps/fisiologia , Joelho de Quadrúpedes/fisiologia , Animais , Cinética , Músculo Esquelético/fisiopatologia , Tíbia/fisiologia
13.
J Mech Behav Biomed Mater ; 40: 222-233, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25243672

RESUMO

The use of biodegradable scaffolds seeded with cells in order to regenerate functional tissue-engineered substitutes offers interesting alternative to common medical approaches for ligament repair. Particularly, finite element (FE) method enables the ability to predict and optimise both the macroscopic behaviour of these scaffolds and the local mechanic signals that control the cell activity. In this study, we investigate the ability of a dedicated FE code to predict the geometrical evolution of a new braided and biodegradable polymer scaffold for ligament tissue engineering by comparing scaffold geometries issued from FE simulations and from X-ray tomographic imaging during a tensile test. Moreover, we compare two types of FE simulations the initial geometries of which are issued either from X-ray imaging or from a computed idealised configuration. We report that the dedicated FE simulations from an idealised reference configuration can be reasonably used in the future to predict the global and local mechanical behaviour of the braided scaffold. A valuable and original dialog between the fields of experimental and numerical characterisation of such fibrous media is thus achieved. In the future, this approach should enable to improve accurate characterisation of local and global behaviour of tissue-engineering scaffolds.


Assuntos
Materiais Biocompatíveis , Ligamentos , Teste de Materiais , Alicerces Teciduais , Fenômenos Biomecânicos , Análise de Elementos Finitos , Polímeros , Engenharia Tecidual/métodos , Tomografia por Raios X
14.
J Mech Behav Biomed Mater ; 12: 184-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22836026

RESUMO

An adapted scaffold for Anterior Cruciate Ligament (ACL) tissue engineering must match biological, morphological and biomechanical requirements. Computer-aided tissue engineering consists of finding the most appropriate scaffold regarding a specific application by using numerical tools. In the present study, the biomechanical behavior of a new multilayer braided scaffold adapted to computer-aided tissue engineering is computed by using a dedicated Finite Element (FE) code. Among different copoly(lactic acid-co-(ε-caprolactone)) (PLCL) fibers tested in the present study, PLCL fibers with a lactic acid/ε-caprolactone ratio of 85/15 were selected as a constitutive material for the scaffold considering its strength and deformability. The mechanical behavior of these fibers was utilized as material input in a Finite Element (FE) code which considers contact/friction interactions between fibers within a large deformation framework. An initial geometry issued from the braiding process was then computed and was found to be representative of the actual scaffold geometry. Comparisons between simulated tensile tests and experimental data show that the method enables to predict the tensile response of the multilayer braided scaffold as a function of different process parameters. As a result, the present approach constitutes a valuable tool in order to determine the configuration which best fits the biomechanical requirements needed to restore the knee function during the rehabilitation period. The developed approach also allows the mechanical stimuli due to external loading to be quantified, and will be used to perform further mechanobiological analyses of the scaffold under dynamic culture.


Assuntos
Ligamento Cruzado Anterior/fisiopatologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Algoritmos , Ligamento Cruzado Anterior/fisiologia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Caproatos/química , Simulação por Computador , Humanos , Joelho/fisiopatologia , Lactonas/química , Teste de Materiais , Polímeros/química , Software , Estresse Mecânico , Resistência à Tração
15.
J Biomech Eng ; 133(6): 065001, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21744936

RESUMO

Tissue engineering offers an interesting alternative to current anterior cruciate ligament (ACL) surgeries. Indeed, a tissue-engineered solution could ideally overcome the long-term complications due to actual ACL reconstruction by being gradually replaced by biological tissue. Key requirements concerning the ideal scaffold for ligament tissue engineering are numerous and concern its mechanical properties, biochemical nature, and morphology. This study is aimed at predicting the morphology of a novel scaffold for ligament tissue engineering, based on multilayer braided biodegradable copoly(lactic acid-co-(e-caprolactone)) (PLCL) fibers The process used to create the scaffold is briefly presented, and the degradations of the material before and after the scaffold processing are compared. The process offers varying parameters, such as the number of layers in the scaffold, the pitch length of the braid, and the fibers' diameter. The prediction of the morphology in terms of pore size distribution and pores interconnectivity as a function of these parameters is performed numerically using an original method based on a virtual scaffold. The virtual scaffold geometry and the prediction of pore size distribution are evaluated by comparison with experimental results. The presented process permits creation of a tailorable scaffold for ligament tissue engineering using basic equipment and from minimum amounts of raw material. The virtual scaffold geometry closely mimics the geometry of real scaffolds, and the prediction of the pore size distribution is found to be in good accordance with measurements on real scaffolds. The scaffold offers an interconnected network of pores the sizes of which are adjustable by playing on the process parameters and are able to match the ideal pore size reported for tissue ingrowth. The adjustability of the presented scaffold could permit its application in both classical ACL reconstructions and anatomical double-bundle reconstructions. The precise knowledge of the scaffold morphology using the virtual scaffold will be useful to interpret the activity of cells once it will be seeded into the scaffold. An interesting perspective of the present work is to perform a similar study aiming at predicting the mechanical response of the scaffold according to the same process parameters, by implanting the virtual scaffold into a finite element algorithm.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Engenharia Tecidual , Alicerces Teciduais , Ligamento Cruzado Anterior/fisiopatologia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Humanos , Poliésteres/química , Alicerces Teciduais/química , Interface Usuário-Computador
16.
Med Eng Phys ; 33(10): 1270-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21764623

RESUMO

This study presents a new method for the 3D reconstruction of the human cranial vault from routine Computed Tomography (CT) data. The reconstruction method was based on the conceptualization of the shape of the cranial vault with a parametric description. An initialization was first realized with the identification of anatomical landmarks and contours on Digitally Reconstructed Radiographs (DRR) in order to obtain a pre-personalized reconstruction. Then an optimization of the reconstruction was performed to segment the internal and external surfaces of the cranial vault for thickness computation. The method was validated by comparing final reconstructions issued from our approach and from a manual slice-by-slice segmentation method on ten CT-scans. Errors were comparable to the CT image resolution, and less than 2 min were dedicated to the operator-dependent marking step. The reconstruction of internal and external surfaces of the cranial vault allows quantifying and visualizing of thickness throughout the cranial vault. This thickness mapping is useful for clinical purposes as additional pre-surgical information. Moreover, this study constitutes a first step in the personalized characterization of skull resistance directly from routine exams.


Assuntos
Imageamento Tridimensional/métodos , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...