Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 30: 100578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38912007

RESUMO

Background and Purpose: Automatic segmentation methods have greatly changed the RadioTherapy (RT) workflow, but still need to be extended to target volumes. In this paper, Deep Learning (DL) models were compared for Gross Tumor Volume (GTV) segmentation in locally advanced cervical cancer, and a novel investigation into failure detection was introduced by utilizing radiomic features. Methods and materials: We trained eight DL models (UNet, VNet, SegResNet, SegResNetVAE) for 2D and 3D segmentation. Ensembling individually trained models during cross-validation generated the final segmentation. To detect failures, binary classifiers were trained using radiomic features extracted from segmented GTVs as inputs, aiming to classify contours based on whether their Dice Similarity Coefficient ( DSC ) < T and DSC ⩾ T . Two distinct cohorts of T2-Weighted (T2W) pre-RT MR images captured in 2D sequences were used: one retrospective cohort consisting of 115 LACC patients from 30 scanners, and the other prospective cohort, comprising 51 patients from 7 scanners, used for testing. Results: Segmentation by 2D-SegResNet achieved the best DSC, Surface DSC ( SDSC 3 mm ), and 95th Hausdorff Distance (95HD): DSC = 0.72 ± 0.16, SDSC 3 mm =0.66 ± 0.17, and 95HD = 14.6 ± 9.0 mm without missing segmentation ( M =0) on the test cohort. Failure detection could generate precision ( P = 0.88 ), recall ( R = 0.75 ), F1-score ( F = 0.81 ), and accuracy ( A = 0.86 ) using Logistic Regression (LR) classifier on the test cohort with a threshold T = 0.67 on DSC values. Conclusions: Our study revealed that segmentation accuracy varies slightly among different DL methods, with 2D networks outperforming 3D networks in 2D MRI sequences. Doctors found the time-saving aspect advantageous. The proposed failure detection could guide doctors in sensitive cases.

2.
J Transl Med ; 21(1): 773, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907934

RESUMO

BACKGROUND: KRAS activating mutations are considered the most frequent oncogenic drivers and are correlated with radio-resistance in multiple cancers including non-small cell lung cancer (NSCLC) and colorectal cancer. Although KRAS was considered undruggable until recently, several KRAS inhibitors have recently reached clinical development. Among them, MRTX849 (Mirati Therapeutics) showed encouraging clinical outcomes for the treatment of selected patients with KRASG12C mutated NSCLC and colorectal cancers. In this work, we explore the ability of MRTX1257, a KRASG12C inhibitor analogous to MRTX849, to radio-sensitize KRASG12C+/+ mutated cell lines and tumors. METHODS: Both in vitro and in vivo models of radiotherapy (RT) in association with MRTX1257 were used, with different RAS mutational profiles. We assessed in vitro the radio-sensitizing effect of MRTX1257 in CT26 KRASG12C+/+, CT26 WT, LL2 WT and LL2 NRAS KO (LL2 NRAS-/-) cell lines. In vivo, we used syngeneic models of subcutaneous CT26 KRASG12C+/+ tumors in BALB/c mice and T cell deficient athymic nu/nu mice to assess both the radio-sensitizing effect of MRTX1257 and its immunological features. RESULTS: MRTX1257 was able to radio-sensitize CT26 KRASG12C+/+ cells in vitro in a time and dose dependent manner. Moreover, RT in association with MRTX1257 in BALB/c mice bearing CT26 KRASG12C+/+ subcutaneous tumors resulted in an observable cure rate of 20%. However, no durable response was observed with similar treatment in athymic nude mice. The analysis of the immune microenvironment of CT26 KRASG12C+/+ tumors following RT and MRTX1257 showed an increase in the proportion of various cell subtypes including conventional CD4 + T cells, dendritic cells type 2 (cDC2) and inflammatory monocytes. Furthermore, the expression of PD-L1 was dramatically down-regulated within both tumor and myeloid cells, thus illustrating the polarization of the tumor microenvironment towards a pro-inflammatory and anti-tumor phenotype following the combined treatment. CONCLUSION: This work is the first to demonstrate in vitro as in vivo the radio-sensitizing effect of MRTX1257, a potent KRASG12C inhibitor compatible with oral administration, in CT26 KRASG12C mutated cell lines and tumors. This is a first step towards the use of new combinatorial strategies using KRAS inhibitors and RT in KRASG12C mutated tumors, which are the most represented in NSCLC with 14% of patients harboring this mutational profile.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Camundongos Nus , Mutação/genética , Microambiente Tumoral
3.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37270182

RESUMO

BACKGROUND: Irradiation (IR) and immune checkpoint inhibitor (ICI) combination is a promising treatment modality. However, local and distance treatment failure and resistance can occur. To counteract this resistance, several studies propose CD73, an ectoenzyme, as a potential target to improve the antitumor efficiency of IR and ICI. Although CD73 targeting in combination with IR and ICI has shown attractive antitumor effects in preclinical models, the rationale for CD73 targeting based on CD73 tumor expression level deserves further investigations. METHODS: Here we evaluated for the first time the efficacy of two administration regimens of CD73 neutralizing antibody (one dose vs four doses) in combination with IR according to the expression level of CD73 in two subcutaneous tumor models expressing different levels of CD73. RESULTS: We showed that CD73 is weakly expressed by MC38 tumors even after IR, when compared with the TS/A model that highly expressed CD73. Treatment with four doses of anti-CD73 improved the TS/A tumor response to IR, while it was ineffective against the CD73 low-expressing MC38 tumors. Surprisingly, a single dose of anti-CD73 exerted a significant antitumor activity against MC38 tumors. On CD73 overexpression in MC38 cells, four doses of anti-CD73 were required to improve the efficacy of IR. Mechanistically, a correlation between a downregulation of iCOS expression in CD4+ T cells and an improved response to IR after anti-CD73 treatment was observed and iCOS targeting could restore an impaired benefit from anti-CD73 treatment. CONCLUSIONS: These data emphasize the importance of the dosing regimen for anti-CD73 treatment to improve tumor response to IR and identify iCOS as part of the underlying molecular mechanisms. Our data suggest that the selection of appropriate dosing regimen is required to optimize the therapeutic efficacy of immunotherapy-radiotherapy combinations.


Assuntos
Neoplasias , Humanos , Regulação para Baixo , Neoplasias/terapia , Linfócitos T/metabolismo , Imunoterapia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo
4.
Oncoimmunology ; 12(1): 2158013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567802

RESUMO

Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/radioterapia , Linfócitos T , Microambiente Tumoral , Terapia Baseada em Transplante de Células e Tecidos
5.
J Immunother Cancer ; 10(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36307149

RESUMO

PURPOSE: While there is still a significant need to identify potential biomarkers that can predict which patients are most likely to respond to immunotherapy treatments, radiomic approaches have shown promising results. The objectives of this study were to evaluate whether a previously validated radiomics signature of CD8 T-cells could predict progressions at a lesion level and whether the spatial heterogeneity of this radiomics score could be used at a patient level to assess the clinical response and survival of melanoma patients. METHODS: Clinical data from patients with advanced melanoma treated in our center with immunotherapy were retrieved. Radiomic features were extracted and the CD8 radiomics signature was applied. A progressive lesion was defined by an increase in lesion size of 20% or more. Dispersion metrics of the radiomics signature were estimated to evaluate the impact of interlesion heterogeneity on patient's response. Fine-tuned cut-offs for predicting overall survival were evaluated after splitting data into training and test sets. RESULTS: A total of 136 patients were included in this study, with 1120 segmented lesions at baseline, and 1052 lesions at first evaluation. A low CD8 radiomics score at baseline was associated with a significantly higher risk of lesion progression (AUC=0.55, p=0.0091), especially for lesions larger than >1 mL (AUC=0.59 overall, p=0.0035, with AUC=0.75, p=0.002 for subcutaneous lesions, AUC=0.68, p=0.01, for liver lesions and AUC=0.62, p=0.03 for nodes). The least infiltrated lesion according to the radiomics score of CD8 T-cells was positively associated with overall survival (training set HR=0.31, p=0.00062, test set HR=0.28, p=0.016), which remained significant in a multivariate analysis including clinical and biological variables. CONCLUSIONS: These results confirm the predictive value at a lesion level of the biologically inspired CD8 radiomics score in melanoma patients treated with anti-PD1-based immunotherapy and may be interesting to assess the disease spatial heterogeneity to evaluate the patient prognosis with potential clinical implication such as tumor selection for focal ablative therapies.


Assuntos
Imunoterapia , Melanoma , Humanos , Imunoterapia/métodos , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Linfócitos T CD8-Positivos , Prognóstico
6.
8.
Cancers (Basel) ; 11(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226866

RESUMO

Historically, the 4Rs and then the 5Rs of radiobiology explained the effect of radiation therapy (RT) fractionation on the treatment efficacy. These 5Rs are: Repair, Redistribution, Reoxygenation, Repopulation and, more recently, intrinsic Radiosensitivity. Advances in radiobiology have demonstrated that RT is able to modify the tumor micro environment (TME) and to induce a local and systemic (abscopal effect) immune response. Conversely, RT is able to increase some immunosuppressive barriers, which can lead to tumor radioresistance. Fractionation and dose can affect the immunomodulatory properties of RT. Here, we review how fractionation, dose and timing shape the RT-induced anti-tumor immune response and the therapeutic effect of RT. We discuss how immunomodulators targeting immune checkpoint inhibitors and the cGAS/STING (cyclic GMP-AMP Synthase/Stimulator of Interferon Genes) pathway can be successfully combined with RT. We then review current trials evaluating the RT/Immunotherapy combination efficacy and suggest new innovative associations of RT with immunotherapies currently used in clinic or in development with strategic schedule administration (fractionation, dose, and timing) to reverse immune-related radioresistance. Overall, our work will present the existing evidence supporting the claim that the reactivation of the anti-tumor immune response can be regarded as the 6th R of Radiobiology.

9.
J Immunother Cancer ; 7(1): 160, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238970

RESUMO

PURPOSE/OBJECTIVE: Radiotherapy (RT) induces an immunogenic antitumor response, but also some immunosuppressive barriers. It remains unclear how different fractionation protocols can modulate the immune microenvironment. Clinical studies are ongoing to evaluate immune checkpoint inhibitors (ICI) in association with RT. However, only few trials aim to optimize the RT fractionation to improve efficacy of these associations. Here we sought to characterize the effect of different fractionation protocols on immune response with a view to associating them with ICI. MATERIALS/METHODS: Mice bearing subcutaneous CT26 colon tumors were irradiated using a SARRP device according to different radiation schemes with a same biologically effective dose. Mice were monitored for tumor growth. The radiation immune response (lymphoid, myeloid cells, lymphoid cytokines and immune checkpoint targets) was monitored by flow cytometry at different timepoints after treatment and by RNA sequencing analysis (RNAseq). The same radiation protocols were performed with and without inhibitors of immune checkpoints modulated by RT. RESULTS: In the absence of ICI, we showed that 18x2Gy and 3x8Gy induced the longest tumor growth delay compared to 1×16.4Gy. While 3x8Gy and 1×16.4Gy induced a lymphoid response (CD8+ T-cells, Regulators T-cells), 18x2Gy induced a myeloid response (myeloid-derived suppressor cells, tumor-associated macrophages 2). The secretion of granzyme B by CD8+ T cells was increased to a greater extent with 3x8Gy. The expression of PD-L1 by tumor cells was moderately increased by RT, but most durably with 18x2Gy. T cell immunoreceptor with Ig and ITIM domains (TIGIT) expression by CD8+ T-cells was increased with 3x8Gy, but decreased with 18x2Gy. These results were also observed with RNAseq. RT was dramatically more effective with 3x8Gy compared to all the other treatments schemes when associated with anti-TIGIT and anti-PD-L1 (9/10 mice in complete response). The association of anti-PD-L1 and RT was also effective in the 18x2Gy group (8/12 mice in complete response). CONCLUSION: Each fractionation scheme induced different lymphoid and myeloid responses as well as various modulations of PD-L1 and TIGIT expression. Furthermore, 3x8Gy was the most effective protocol when associated with anti-PD-L1 and anti-TIGIT. This is the first study combining RT and anti-TIGIT with promising results; further studies are warranted.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Receptores Imunológicos/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Terapia Combinada , Fracionamento da Dose de Radiação , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...