Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 53: 367-377, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28153581

RESUMO

Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high efficiency, we have investigated an immunotherapeutic Toll-like receptor (TLR) agonist delivery system comprising liposomes targeted to the dendritic cell immunoreceptor (DCIR). We formulated the immune stimulating TLR7 agonist TMX-202 in the liposomes and examined the targeting of the liposomes as well as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system could be a way to improve cancer treatment either in the form of a vaccine with co-formulated antigen or as an immunotherapeutic vector to boost monocyte and DC activity in combination with other treatment protocols such as chemotherapy or radiotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy is a powerful new tool in the oncologist's therapeutic arsenal, with our increased knowledge of anti-tumor immunity providing many new targets for intervention. Monocytes and dendritic cells (DCs) are attractive targets for enhancing the anti-tumor immune response, but systemic delivery of immunomodulators has proven to be associated with a high risk of fatal adverse events due to the systemic activation of the immune system. We address this important obstacle by targeting the delivery of an immunomodulator, a Toll-like receptor agonist, to DCs and monocytes in the bloodstream. We thus focus the activation, potentially avoiding the above-mentioned adverse effects, and demonstrate greatly increased ability of the agonist to induce secretion of anti-cancer cytokines.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Glicerofosfolipídeos/administração & dosagem , Lipossomos/química , Monócitos/imunologia , Receptor 7 Toll-Like/agonistas , Adenina/administração & dosagem , Adenina/imunologia , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicerofosfolipídeos/imunologia , Humanos , Imunoterapia/métodos , Monócitos/efeitos dos fármacos , Receptor 7 Toll-Like/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia
2.
Medicine (Baltimore) ; 95(36): e4806, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27603394

RESUMO

The prognostic value of the metabolic syndrome (MetS) is believed to vary with age. With an elderly population expecting to triple by 2060, it is important to evaluate the validity of MetS in this age group. We examined the association of MetS risk factors with later risk of type 2 diabetes (T2DM) and cardiovascular disease (CVD) in elderly Caucasian women. We further investigated if stratification of individuals not defined with MetS would add predictive power in defining future disease prevalence of individuals with MetS.The Prospective Epidemiological Risk Factor Study, a community-based cohort study, followed 3905 Danish women since 2000 (age: 70.1 ±â€Š6.5) with no previous diagnosis of T2DM or CVD, holding all measurements used for MetS definition; central obesity, hypertension, hyperlipidemia, and hyperglycemia combined with register-based follow-up information.Elderly women with defined MetS presented a 6.3-fold increased risk of T2DM (95% confidence interval: [3.74-10.50]) and 1.7-fold increased risk of CVD (1.44-2.05) compared to women with no MetS risk factors. Subdividing the control group without defined MetS revealed that both centrally obese controls and controls holding other MetS risk factors also had increased risk of T2DM (hazard ratio (HR) = 2.21 [1.25-3.93] and HR = 1.75 [1.04-2.96]) and CVD (HR = 1.51 [1.25-1.83] and HR = 1.36 [1.15-1.60]) when compared to controls with no MetS risk factors.MetS in elderly Caucasian women increased risk of future T2DM and CVD. While not defined with MetS, women holding only some risk factors for MetS were also at increased risk of T2DM or CVD compared to women with no MetS risk factors.


Assuntos
Doenças Cardiovasculares/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Síndrome Metabólica/epidemiologia , População Branca , Idoso , Doenças Cardiovasculares/etnologia , Dinamarca/epidemiologia , Diabetes Mellitus Tipo 2/etnologia , Feminino , Humanos , Hiperglicemia/epidemiologia , Hiperlipidemias/epidemiologia , Hipertensão/epidemiologia , Síndrome Metabólica/etnologia , Obesidade Abdominal/epidemiologia , Fatores de Risco
3.
Dev Cell ; 37(6): 558-70, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27326933

RESUMO

Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms.


Assuntos
Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Testes Genéticos , Genoma de Inseto , Hormônios/biossíntese , Esteroides/biossíntese , Acetiltransferases/metabolismo , Animais , Autofagia/genética , Transporte Biológico/genética , Colesterol/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Elongases de Ácidos Graxos , Metabolismo dos Lipídeos/genética , Fenótipo , Interferência de RNA , Transdução de Sinais/genética , Esfingolipídeos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...