Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 3299, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459753

RESUMO

Climate impacts of forest bioenergy result from a multitude of warming and cooling effects and vary by location and technology. While past bioenergy studies have analysed a limited number of climate-altering pollutants and activities, no studies have jointly addressed supply chain greenhouse gas emissions, biogenic CO2 fluxes, aerosols and albedo changes at high spatial and process detail. Here, we present a national-level climate impact analysis of stationary bioenergy systems in Norway based on wood-burning stoves and wood biomass-based district heating. We find that cooling aerosols and albedo offset 60-70% of total warming, leaving a net warming of 340 or 69 kg CO2e MWh-1 for stoves or district heating, respectively. Large variations are observed over locations for albedo, and over technology alternatives for aerosols. By demonstrating both notable magnitudes and complexities of different climate warming and cooling effects of forest bioenergy in Norway, our study emphasizes the need to consider multiple forcing agents in climate impact analysis of forest bioenergy.

2.
J Environ Manage ; 184(Pt 3): 517-527, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27789091

RESUMO

This study assesses the environmental sustainability of electricity production through anaerobic co-digestion of sewage sludge and organic wastes. The analysis relies on primary data from a biogas plant, supplemented with data from the literature. The climate impact assessment includes emissions of near-term climate forcers (NTCFs) like ozone precursors and aerosols, which are frequently overlooked in Life Cycle Assessment (LCA), and the application of a suite of different emission metrics, based on either the Global Warming Potential (GWP) or the Global Temperature change Potential (GTP) with a time horizon (TH) of 20 or 100 years. The environmental performances of the biogas system are benchmarked against a conventional fossil fuel system. We also investigate the sensitivity of the system to critical parameters and provide five different scenarios in a sensitivity analysis. Hotspots are the management of the digestate (mainly due to the open storage) and methane (CH4) losses during the anaerobic co-digestion. Results are sensitive to the type of climate metric used. The impacts range from 52 up to 116 g CO2-eq./MJ electricity when using GTP100 and GWP20, respectively. This difference is mostly due to the varying contribution from CH4 emissions. The influence of NTCFs is about 6% for GWP100 (worst case), and grows up to 31% for GWP20 (best case). The biogas system has a lower performance than the fossil reference system for the acidification and particulate matter formation potentials. We argue for an active consideration of NTCFs in LCA and a critical reflection over the climate metrics to be used, as these aspects can significantly affect the final outcomes.


Assuntos
Biocombustíveis , Centrais Elétricas , Poluentes Atmosféricos/análise , Clima , Combustíveis Fósseis , Aquecimento Global , Metano/análise , Ozônio/análise , Esgotos
3.
Waste Manag ; 58: 191-201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27679967

RESUMO

Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO2eq/kg of waste and 25 to 61gCO2eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess capacity of the Norwegian WtE sector and to reach Norway's ambitious political goals for environmentally friendly energy systems.


Assuntos
Fontes Geradoras de Energia , Meio Ambiente , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Dióxido de Carbono/análise , Mudança Climática , Eutrofização , Água Doce , Humanos , Óxidos de Nitrogênio/análise , Noruega , Ozônio , Material Particulado/análise , Dióxido de Enxofre/análise , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA