Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341679

RESUMO

Pharmacologic strategies that target factors with both pro-apoptotic and anti-proliferative functions in cardiomyocytes (CMs) may be useful for the treatment of ischemic heart disease. One such multifunctional candidate for drug targeting is the acetyltransferase Tip60, which is known to acetylate both histone and non-histone protein targets that have been shown in cancer cells to promote apoptosis and to initiate the DNA damage response, thereby limiting cellular expansion. Using a murine model, we recently published findings demonstrating that CM-specific disruption of the Kat5 gene encoding Tip60 markedly protects against the damaging effects of myocardial infarction (MI). In the experiments described here, in lieu of genetic targeting, we administered TH1834, an experimental drug designed to specifically inhibit the acetyltransferase domain of Tip60. We report that, similar to the effect of disrupting the Kat5 gene, daily systemic administration of TH1834 beginning 3 days after induction of MI and continuing for 2 weeks of a 4-week timeline resulted in improved systolic function, reduced apoptosis and scarring, and increased activation of the CM cell cycle, effects accompanied by reduced expression of genes that promote apoptosis and inhibit the cell cycle and reduced levels of CMs exhibiting phosphorylated Atm. These results support the possibility that drugs that inhibit the acetyltransferase activity of Tip60 may be useful agents for the treatment of ischemic heart disease.


Assuntos
Histona Acetiltransferases , Infarto do Miocárdio , Camundongos , Animais , Histona Acetiltransferases/metabolismo , Apoptose , Miócitos Cardíacos/metabolismo , Histonas/metabolismo , Infarto do Miocárdio/tratamento farmacológico
2.
J Mol Cell Cardiol ; 163: 9-19, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610340

RESUMO

Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.


Assuntos
Acetiltransferases , Infarto do Miocárdio , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Animais , Apoptose/genética , Ciclo Celular , Lisina Acetiltransferase 5 , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores
3.
J Mol Cell Cardiol ; 155: 88-98, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609538

RESUMO

Tip60, a pan-acetyltransferase encoded by the Kat5 gene, is enriched in the myocardium; however, its function in the heart is unknown. In cancer cells, Tip60 acetylates Atm (Ataxia-telangiectasia mutated), enabling its auto-phosphorylation (pAtm), which activates the DNA damage response (DDR). It was recently reported that activation of pAtm at the time of birth induces the DDR in cardiomyocytes (CMs), resulting in proliferative senescence. We therefore hypothesized that Tip60 initiates this process, and that depletion of Tip60 accordingly diminishes the DDR while extending the duration of CM cell-cycle activation. To test this hypothesis, an experimental model was used wherein a Myh6-driven Cre-recombinase transgene was activated on postnatal day 0 (P0) to recombine floxed Kat5 alleles and induce Tip60 depletion in neonatal CMs, without causing pathogenesis. Depletion of Tip60 resulted in reduced numbers of pAtm-positive CMs during the neonatal period, which correlated with reduced numbers of pH2A.X-positive CMs and decreased expression of genes encoding markers of the DDR as well as inflammation. This was accompanied by decreased expression of the cell-cycle inhibitors Meis1 and p27, activation of the cell-cycle in CMs, reduced CM size, and increased numbers of mononuclear/diploid CMs. Increased expression of fetal markers suggested that Tip60 depletion promotes a fetal-like proliferative state. Finally, infarction of Tip60-depleted hearts at P7 revealed improved cardiac function at P39 accompanied by reduced fibrosis, increased CM cell-cycle activation, and reduced apoptosis in the remote zone. These findings indicate that, among its pleiotropic functions, Tip60 induces the DDR in CMs, contributing to proliferative senescence.


Assuntos
Pontos de Checagem do Ciclo Celular , Dano ao DNA , Lisina Acetiltransferase 5/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Biomarcadores , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Imuno-Histoquímica , Lisina Acetiltransferase 5/genética , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ploidias , Transativadores/genética , Cicatrização
4.
Dis Model Mech ; 13(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33106234

RESUMO

Regeneration of muscle in the damaged myocardium is a major objective of cardiovascular research, for which purpose many investigators utilize mice containing transgenes encoding Cre recombinase to recombine loxP-flanked target genes. An unfortunate side effect of the Cre-loxP model is the propensity of Cre recombinase to inflict off-target DNA damage, which has been documented in various eukaryotic cell types including cardiomyocytes (CMs). In the heart, reported effects of Cre recombinase include contractile dysfunction, fibrosis, cellular infiltration and induction of the DNA damage response (DDR). During experiments on adult mice containing a widely used Myh6-merCremer transgene, the protein product of which is activated by tamoxifen, we observed large, transient, off-target effects of merCremer, some of which have not previously been reported. On Day 3 after the first of three daily tamoxifen injections, immunofluorescent microscopy of heart sections revealed that the presence of merCremer protein in myonuclei was nearly uniform, thereafter diminishing to near extinction by Day 6; during this time, cardiac function was depressed as determined by echocardiography. On Day 5, peaks of apoptosis and expression of DDR-regulatory genes were observed, highlighted by >25-fold increased expression of Brca1 Concomitantly, the expression of genes encoding cyclin-A2, cyclin-B2 and cyclin-dependent kinase 1, which regulate the G2/S cell-cycle transition, were dramatically increased (>50- to 100-fold). Importantly, immunofluorescent staining revealed that this was accompanied by peaks in Ki67, 5'-bromodeoxyuridine and phosphohistone H3 labeling in non-CMs, as well as CMs. We further document that tamoxifen-induced activation of merCremer exacerbates cardiac dysfunction following myocardial infarction. These findings, when considered in the context of previous reports, indicate that the presence of merCremer in the nucleus induces DNA damage and unscheduled cell-cycle activation. Although these effects are transient, the inclusion of appropriate controls, coupled with an awareness of the defects caused by Cre recombinase, are required to avoid misinterpreting results when using Cre-loxP models for cardiac regeneration studies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Ciclo Celular , Dano ao DNA , Integrases/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Reparo do DNA/efeitos dos fármacos , Eletrocardiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...